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PREFACE

* This report describes a research effort conducted by personnel of the Department of

Computer and Information Science, University of Massachusetts, Amherst, Massachusetts,

supported by the Air Force Office of Scientific Research and the Avionics Laboratory (Air

Force Wright Aeronautical Laboratories) through contract F33615-8O-C-1088, "Decision

Making by Adaptive Networks of Goal Seeking Components,* under Project 2312, Task

2312R1, and Work Unit 2312R103. The research reported here was performed during the

period 15 June 1980 to 31 August 1983. The Principal Investigator was D. N. Spinelli

and the Co-Principal Investigator was A. Barto. This report was released by its editor, A.

Barto, in January 1984.

Since the first vertebrates appeared on the face of the earth, 400 million years ago, they

have conquered all habitats. Among the vertebrate species, homo, sapiens is dominant.

This has come about, without question, because of the human brain. During the last

eyebllnk of evolution, the human brain has created civilization as we know it. Vertebrate

brains, in general, and the human brain in particular, are machines of immense complexity,

capable of adaptation and goal seeking in a great many habitats. Further, most vertebrate

brains also possess extremely sophisticated remote sensing systems such as vision and

* hearing. During the last fraction of the last evolutionary eyoblink, the human brain has

created the digital, sequential, computer whose development and use in the last years

has been nothing short of astonishing. This machine derives its awesome power from the

fact that it is possible to make it perform with high speed and precision "some' of the

functions that the human brain performs even though its architecture is totally unlike that

of the brain. The successes of Artificial Intelligence in the field of Expert Systems and the

difficulties it has encountered in the fields of image understanding and speech recognition

seem to indicate that the digital computer, that is, the von Neumann architecture, is

particularly good when it comes to cognition and particularly bad when it comes to remote

sensing, goal seeking, adaptation and decision making, where brains excel. In a way, if we

could simply copy brain architecture onto silicon we would make a giant step forward, just



because of the gain in speed (several orders of magnitude). This might in fact become a

possibility as neuroscience is making impressive progress in understanding structure and

function of systems devoted to adaptation and sensing - a field to which we are ourselves

contributing.

Brains are made of neurons and we are beginning to see that neurons themselves

are adaptive and goal seeking. This report deals with a number of studies, theoretical

and experimental, of goal-seeking adaptive networks composed of goal-seeking adaptive

elements. These elements, motivated by a proposal by H. Klopf that neurons are self-

interested agents, have been studied by A. Barto and R. Sutton. A variety of adaptive

networks of these elements were studied in highly constrained test-bed situations by Barto,

Sutton and Anderson. The results here reported show that the networks investigated, even

though quite simple, exhibit exciting capabilities when tested on problems that involve

classical difficulties such as the temporal credit-assignment problem. Though much remains

to be investigated, we believe that networks of robust, self-interested, adaptive elements

are prime candidates for non-von Neumann architectures.

D. N. SPINELLI

PrIRfCpOI Investigator

UnIersft of Massachusetts
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Section 1

INTRODUCTION

This report describes some of the results obtained from computational studies of goal-

seeking systems composed of goal-seeking components. Whereas our earlier studies were

largely exploratory in nature (Barto and Sutton, 1981b), the studies described here were

systematic attempts to understand and to improve the performance of a specific type of

adaptive component and to illustrate the behavior of networks of these components. This

* type of component was motivated by the hypothesis of Klopf (1972, 1982) that neurons are

"self-interested" agents that implement behavioral strategies for improving performance

determined by their preferences for certain types of inputs over others. We continue to

find this a fruitful hypothesis. The study of networks of this type of adaptive component

involves many of the issues that arise in the study of the collective behavior of self-interested

agents, whether in the context of game theory, economics, or evolutionary biology. We

think that this approach has the potential for making adaptive networks useful parts of

sophisticated adaptive problem-solving systems.

ft.. The results reported here illustrate some of the capabilities of these networks, but they

are largely concerned with the systematic development of suitable adaptive elements. It is

our contention that to move beyond simple single-layer adaptive networks it is necessary

for each network component to implement a fairly sophisticated learning algorithm. An

adaptive component that is deeply embedded within a network faces a learning problem

that is difficult because of the high degree of uncertainty involved in evaluating its indi-

vidual performance. Our initial simulation experiments with layered networks (Section 2)

convinced us that we were studying the right kind of element, but these experiments also

*indicated that the elements needed more development. Consequently, many of the results

do not involve complicated networks. They may be regarded either as results about sin-

gle elements or about abstract learning algorithms. However, all of the experiments were

motivat -d by ar' aterest in networks, and all of the single-element learning tasks were

designea iso .ehect aspects of the tasks faced by network components.

........... ....... . . . . .1
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Associative Reinforcement Learning

The learning algorithms we have studied are specific types of associative reinforcement

learning algorithms. On the surface, associative reinforcement learning is a very simple

idea clearly expressed in Thorndike's (1911) famous "Law of Effect":

Of several responses made to the same situation, those which are accompanied or closely

followed by satisfaction to the animal will, other things being equal, be more firmly con-

nected with the situation, so that, when it recurs, they will be more likely to recur; those

which are accompanied or closely followed by discomfort to the animal will, other things

being equal, have their connections with that situation weakened, so that, when it recurs,

they will be less likely to occur. The greater the satisfaction or discomfort, the greater
the strengthening or weakening of the bond. (p. 244)

This describes associative reinforcement learning because it emphasizes that associations

between stimuli and responses are formed. Although psychologists have demonstrated that

the Law of Effect does not provide an accurate account of animal learning behavior (due

in part to its symmetrical view of reinforcement and punishment), the general principle it

embodies has retained its importance. From the perspective of Artificial Intelligence (Al),

this principle has been criticized because it does not suffice to explain how complicated

sequences of complicated actions can be learned in reasonable amounts of time. Minsky

(1961), for example, has emphasized that in complex learning tasks it is very difficult

to "assign credit' for reinforcement to specific decisions made in the course of behavior.

Assigning credit merely on the basis of "recency" as suggested by the Law of Effect is not
adequate. This well-known difficulty has been largely responsible for the lack of interest in

reinforcement learning among AI researchers. It is hard to see how reinforcement learning
can be extended to the difficult learning problems whose solutions would have practical
importance.

If the results reported he -e have one central theme, it is that reinforcement learning,

especially associative reinforcement learning, involves subtle difficulties that, to the best of

* our knowledge, have not been elucidated by earlier research. We think that these difficulties

bear directly on the problem of extending reinforcement learning to difficult learning tasks.

We agree that credit assignment is of critical importance in reinforcement learning, and

some of our results bear directly upon credit- assignment problems, but we have also studied

2
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* phenomena appearing even in very simp,'e problems that render common reinforcement-

learning algorithms ineffective. For example, we show t~lat certain properties of tasks
cause intuitively appealing algorithms always to learn to perform the wrong actions. We

think algorithms need to ovecome such difficulties by incorporating mechanisms at as low

a level a possible. Consequently, we have given considerable attention to the detailed

design of low-level learning algorithms that are effective performers across a wide range

of conditions. In this way we hope to prevent an attempt to solve a complex learning

problem by a complex system from failing due to hidden low-level difficulties. We suspect

that the poor performance of some earlier reinforcement-learning systems was due to such

hidden problems rather than to mistakes in overall principles. In reinforcement learning,

* as in other domains, it is quite possible for efforts to be on the right track yet fail due

to inadequate understanding of subtleties and inadequate fine-tuning. We believe this to

* have been the case with computational approaches to reinforcement learning, especially

those involving adaptive networks of neuronlike elements.

Methodology

The methodology we used strongly relies on computer simulation. Although we do

not regard simulation results as substitutes for mathematical theories, we did not wish to

let mathematical convenience dictate the class of learning systems to be studied. Where

possible, we attempted to prove mathematical results, but these apply only to restricted

cases. A powerful and general mathematical theory may exist, but we have not yet found it.

Consequently, we performed empirical analyses of the performance of a variety of learning

algorithms by conducting carefully designed simulation experiments. In most cases, these

simulation experiments were comparative studies that allowed us to determine the relative

performance of a number of algorithms in specific tasks. The results of these simulation

* experiments provide an indication as to what form a mathematical theory should take and

what results it should permit one to prove. Additionally, wherever possible, we included
I algorithms proposed by other researchers in these comparative experiments. In this way

we tried to demonstrate advances over existing methods, although the possibility clearly

exists tha-t we are not yet aware of all of the relevant existing algorithms.



* - .Great care was taken i.- designing the tasks used to test and compare learning algo-
ritlims. These tasks, or test-beds, are of roughly two kinds. Test-beds of one type involve

relatively simple, abstract tasks that test one, and only one, feature of a learning algorithm.

By using such abstract test-beds, one is able to determine the features of an algorithm

that are responsible for specific features of its performance. Experiments with these test-

beds are similar to those conducted by psychologists using animal subjects, including the

use of control subjects and tests of statistical significance. We used abstract test-beds for

obtaining the results reported in Sections 3, 4, and 5. The second type of test-bed is a less

abstract problem designed to simultaneously test several aspects of a learning algorithm

in a problem that can be given an intuitively clear physical interpretation. This second

type of test-bed helps ensure that the abstract text-beds deal with realistic issues.

* The results reported in Section 2 were obtained using tasks that we interpret as types

of spatial-learning problems. Although these 'landmark-learning" problems did not result

* from an attempt to model real spatial learning, we found that these tasks provide an

easily visualized way to study issues that are relevant to more difficult control problems
(where the "physical" space becomes the abstract state space of a dynamical system). Our

original motivation for studying landmark-learning problems was that the spatial setting

* allowed us to define problems that we knew could be solved by networks restricted to

* implementing linear mappings. A side benefit of these experiments, however, has been

their suggestiveness about the evolutionary origin of learning and its relation to the taxes

-~ and trophisms exhibited by simple goal-seeking organisms. Other results (reported in

Section 6) were obtained using a more complex test-bed that requires the control of a

- simulated phy'gical dynamical system. In this case, the problem is to learn to balance a

pole under conditions that created a difficult credit-assignment problem. In designing these

4. test-beds, we attempted to focus upon issues that we believe are of central importance in

the design of efficient and extensible learning algorithms.

Although this research was obviously influenced by an interest in the neural basis of

learning, we did not attempt to model specific neural processes. The adaptive compo-

nents we studied have many neuronlike attributes and were motivated by Klopf's neural

hypothesis, but we purposefully refer to them as "adaptive elements" rather than neural

L4
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models. We take this position because we rely upon the problem-solving capabilities of

our systems to justify their study rather than upon neuroanatomical or neurophysiolog-

ical data. However, we hope that our research is suggestive for neuroscientists who are

more qualified than we are to determine how strongly these constructions can be related

. to neural systems. In particular, we think that 1) the role of the random component of
1V neural discharge needs to be reexamined in light of its possible role in search processes*

and 2) the possible existence of associative reinforcement learning at the single cell level,

as hypothesized by Klopf, needs to be experimentally examined.

Reinforcement-Learning versus Error-Correction Learning

One of the most important distinctions relevant to the research reported here is the

distinction between reinforcement learning and error-correction learning. This distinction

can be most clearly made in terms of the quality of the information supplied to the learning

system by its environment. This information may range from explicit specification of the

actions that the system is required to perform to unreliable and infrequent assessments of

certain distant consequences of the system's actions. In the first case, the learning system

need only remember what it is told, whereas in the second case, the system must somehow

-. discover what actions have consequences that lead to improving performance.
*-.1.

When there is a "teacher" in the environment that can tell the learning system exactly

what action it should take for each input, then "learning" is easy. This amounts to the rote

storage of information, something that conventional computer memory systems accomplish

very efficiently. A less knowledgeable teacher may know the correct actions for just some

of the input situations. Under these circumstances, a rote storage method that provides

some form of generalization may permit correct extrapolation of the teacher's knowledge

to a broader class of situations. This type of learning problem has been extensively studied

as "supervised learning pattern classification! (see, for example, Duda and Hart, 1974).

The teacher provides the learning system with a set of input patterns together with their

* "-'correct classifications (e.g., a selection of exemplars and counterexemplars of each class),

* Hinton and Sejnowski (1983) make a similar suggestion.

A 5
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and the learning system must correctly classify these samples while extending, via its

generalization capability, the classification of the samples to the set of all possible input

patterns. Algorithms su.zh as that used by the Adaline (Adaptive linear element; Widrow

and Hoff, 1960) or the Perceptron (Rosenblatt, 1962) are examples of these methods. They

can be regarded as error-correction methods that adjust parameters so as to reduce the

discrepancy between how they respond and how their teachers instruct them to respond.

Artificial Intelligence researchers study higher-level versions of this same type of problem

as "learning from examples,* 'concept formation,* or 'inductive inference' (Cohen and

"-- I Feigenbaum, 1982). Although the capacity to generalize is important for both efficient

learning and efficient information storage, we do not believe that all aspects of learning

can be accounted for by mechanisms that require such explicit information, even if it is

required for only a subset of the possible input situations.

More powerful learning capabilities result from the combination of information storage

methods with some form of problem-solving or "discovery' process. The problem-solving

process determines what information needs to be stored in order to efficiently solve a

given problem. The role of the "teacher" is played by the system's own problem-solving

experience. What is needed for implementing this problem-solving component is a strategy

variously called "blind variation and selective survival' (Campbell, 1960), "trial-and-error

search," or more recently by AI researchers, "generate and test.' This type of process

generates trials whose consequences are unforseeable at the time they are generated. These

trials are then evaluated and selected according to their consequences in furthering a given

problem's solution. Trials need ..aly be 'blind' in the sense of not being based upon

complete knowledge of the outcome of a trial before it is generated. Any amount of

knowledge, present initially or acquired during the problem-solving process, may be used
to generate trials with high likelihood of improving problem-solving performance, but true

discovery requires at least some initial doubt.

By a reinforcement-learning system we mean a system employing this type of gener-

ation and selection process. The information from the environment rewards or punishes

actions that were made, but does not instruct the learning system as to what any cor-

rect action would have been. The teaching information from the environment is a scalar

6
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evaluation or reinforcement signal rather than the more extensive teaching information

required in error-correction learning. Reinforcement-learning systems are therefore able

to improve their performance in environments that provide information that is of lower

quality than required by error-correction systems. This is not to say that error correction

plays no part in reinforcement learning. A reinforcement-learning system must internally

determine estimates of error signals based on some form of memory of its past actions and

past performance. The point is that the learning system must do this for itself rather than

rely on so helpful an environment.

-V: We might also call reinforcement learning aelectional and error-correction learning in-

structional. These terms have their origin in immunology where a selectional theory of

antibody formation is one in which specific antibodies are selected from an extensive ex-

isting repertoire of potential antibodies by the action of antigens. Antibodies so selected

then proliferate. An instructional theory, on the other hand, holds that the structure of

an antigen directly alters a molecule to make at an effective antibody; that is, the anti-

gen acts as a kind of conformational template. This use of the term selectional, and its

use to describe neural theories of learning (e.g., Edelman, 1978), refers to selection from a

repertoire of simultaneously existing candidates. However, the term selectional can equally

describe processes in which the repertoire of candidates is generated over time. Selection

from simultaneously existing candidates is undoubtedly an important mechanism of devel-

opment and learning, but the research reported here focuses on selectional mechanisms in

which variety is generated over time.

a.. Additionally, our research has focussed on associative reinforcement learning in which

the learning system receives neutral input, i.e., input that is not teaching or evaluative

information, in addition to reinforcement input. The task is not just to discover an op-

timal action (as it is, for example, in studies of function optimization algorithms) but to

discover an optimal mapping from input to output. The work of Klopf (1972, 1982) has

been instrumental in making us aware of the crucial difference between associative rein-

forcement learning and both pure search and error-correction learning. As Klopf sue' -ests,

associative reinforcement learning has not received as much attention by cyberneticians

and Al researchers as have pure search and error-correction learning. Yet properly under-

• o . o ~ -- . - ° . -. .- . .. . . . . • o . .. . . . .. . .. ..7
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stood, associative reinforcement learning is an obvious way to improve the performance of

a problem-solving system. Its essence is the 'caching" of search results in an associative

memory so that future search is converted into simple memory access. The importance of

this process is appreciated by Al researchers (see, for example, Lanat, Hayes-Roth, and

Kialir, 1979), but its use in AI systems is not yet widespread. We believe that if this

process pervasively occurs from the lowest levels of a problem-solving system up to the

highest, and is combined with the well-established generalization capabilities and noise

tolerance of associative networks, then the resulting systems will possess impressive ability

to improve performance with experience.

The Credit-Assignment Problem

There are major problems, however, that need to be overcome if associative reinforce-

ment learning is to be useful in complex learning tasks. Foremost among these is the credit-

assignment problem (Minsky, 1961). The credit-assignment problem for reinforcement-

4 learning systems is the problem of correctly assigning credit or blame to each of the actions

and internal decisions that contributed to the overall evaluation received. This problem can

* become exceedingly difficult either as overall evaluations become more infrequent, making

it less clear which overt actions were responsible for changes in performance, or as the

learning system becomes more complex, making it less clear which internal decisions were

responsible.

This suggests that it is useful to divide the credit-assignment problem for complex

learning systems into two subproblems. One subproblem is that of converting the overall

evaluation for a sequence of steps into an evaluation for each step. The other subproblem

is that of using the evaluation of each step to assign credit to the internal processes of

the learning system that determined the action selected on that step. One can call the

first subproblem the temporal credit-assignment problem and the second subproblem the

structural crcdit-assignment problem. The research reported here concerned both types

of credit- assignment problems, although the major effort was devoted to the temporal

c redit- assignment problem.

The cause of either type of credit- assignment problem is initial uncertainty about the



causal microstructure of the interacting system and environment. Unless we are willing to

assume the existence of sufficient a priori knowledge either built into the system or into

an external teacher (which we are not willing to assume), this uncertainty is unavoidable,

and mechanisms must be devised that can reduCe it over time. One approach that has

been studied involves stochastic search algorithms that are capable of extracting specific

types of statistical regularities from their interactions with random environments. These

algorithms are related to those of the theory of stochastic learning automata (Narendra

and Thathachar, 1974). The concentration upon associative reinforcement learning may

be considered another prong in this attack on uncertainty. Neutral input can be used to

divide a large problem into many subproblems in each of which the uncertainty is more

manageable. A third aspect of our approach to uncertainty has been the development

of an adaptive heuristic critic, in the form of a neuronlike element, that is capable of

constructing from neutral environmental signals an evaluation function that is of higher

quality than any that is available directly.

The adaptive critic is an extension of our previous studies of classical conditioning
(Sutton and Barto, 1981; Barto and Sutton, 1982) and was influenced by Klopf's (1972)

concept of "generalized reinforcement" at the level of single neuronlike elements. It turns

out also to be closely related to a method used in the famous checkers playing program

developed by Samuel (1959). If particular stimuli are regularly followed by high rein-

forcement, then a good critic should assign credit to behavior occurring near the time

of occurrence of those stimuli, rather than to behavior occurring near the time of the

high reinforcement. Credit should be assigned at the earlier time because that was when

the critic was first informed that the high reinforcement was coming, and thus the most

likely time of the action that caused it. Whereas primary reinforcement may be regarded.'

as the credit delivered by externally supplied reinforcement, secondary reinforcement is

credit delivered by stimuli that have acquired reinforcing properties through this kind of

association with primary reinforcement. It is also possible for secondary reinforcers to be

learned by association with previously established secondary reinforcers rather than only

with primary reinforcers. Thus, secondary reinforcement can be "chained" backwards

in time. Secondary reinforcement mechanisms can help overcome the weaknesses of the

9
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Grecency heuristic' in reinforcement learning. Minsky (1961) mentioned the addition of

special devices to reinforcement-learning machines for this purpose.

In Section 6 we describe a simulation experiment in which the adaptive critic coupled

to an associative reinforcement mechanism was applied to a control task having a difficult

temporal credit-assignment problem (a specific form of the pole-balancing problem). On

test runs, this system's performance was dramatically superior to that of an algorithm

previously proposed by others.

We believe that this type of adaptive critic will play a major role in solving struc-

tural credit-assignment problems as well as temporal credit-assignment problems. If every

reinforcement-learning element incorporates its own local instance of an adaptive critic,

then whatever signals happen to be available to the element can serve as the raw informa-

tion from which the adaptive critic can construct a rich, local reinforcement signal. This

may be necessary to assign credit efficiently to the microdecisions that lead to overall net-

work output. We have not yet experimented with adaptive critic elements as components

of complex networks.

Some Clarifications

The notion of goal-seeking components, our particular formulations of such elements,

and our modular, issue-driven methodology have led to several types of misunderstanding

and criticism that we wish to discuss. One type of misunderstanding has arisen because we

have not discussed how we see the approach we are taking fitting into an elaborate overall

model of intelligent behavior. Consequently, there are a number of subjects upon which we

have not commented. This silence upon a subject has sometimes been interpreted as an

indication of our belief that that subject is not important in an overall view of intelligence.

This interpretation is mistaken. We have purposefully not commented upon a number of

issues simply because they have not yet arisen at the level of the problems we have so far

considered. For more complex problems, more elaborate learning systems will be required,

and we prefer not to bring elaborate mechanisms to bear upon problems that can be solved

by simpler mechanisms.

10
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One example of this type of misunderstanding arises because our test-beds to date

have not involved the use of any but the most simple types of a priori knowledge. This

has made it appear to some that we are philosophically inclined toward a tabula rasa view

of learning and intelligence. This is not the case. On the contrary, we think that as much

knowledge as is initially available ought to be brought to bear on any task. Since we are

studying learning, however, we are interested in problems that cannot be efficiently solved

by relying excluaively upon existing knowledge. We intend the methods we are studying

to be suitable for filling-in missing knowledge whether that residue is all of the relevant

knowledge or only a small part of it.

Another cause of misunderstanding is the fact that in our studies to date we have

shown a reinforcement signal being delivered to a learning system along a single channel

that is distinct from the channels by which the system receives other information. This

should be regarded as a convenient abstraction. We could have formalized the problem

as one in which there is only one kind of channel, and the learning system internally

determines the reinforcement value of the input patterns that arrive over these channels.
According to this view, the learning system would have a preference ordering over the

set of its possible stimuli, and internally-computed reinforcement values would code this

-. - preference ordering. Although taking this latter view would help dispel several types of
criticism, the two possibilities ar ctlly equivalent inall repet tha ariporan at

the present stage of our research. * The only difference between the two is the location

* .- *of the boundary between the learning system and its environment. The signal carried by

our formal reinforcement pathway represents a measure of performance that, in physical

terms, could be delivered to the learning system in a variety of ways.

A related criticism is that we are ignoring motivational factors whereby an organism

*~. ... .modifies the reinforcing quality of stimuli based upon its internal state. It is correct that

we have not focused on motivational factors, but the possibility of handling these factors is

not precluded by our formulation. Any number of mechanisms can be interposed between

externally supplied primary reinforcement and the reinforcement that is effective at the

We have not yet considered the case of partially ordered inputs to elements.

V1
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sites of learning. The adaptive critic is one such mechanism. At present, we assume that

the effects of other mechanisms modulating reinforcement are already included in what we

label the primary reinforcement signal. We have not addressed mechanisms that would

correspond to motivational mechanisms in animals because we believe that problems that

are much more fundamental need to be solved first.

A final criticism arises because we insist on endowing individual elements with learning

abilities that others prefer to place in centralized mechanisms. If one wishes to interpret

single adaptive elements as neurons, then our view seems to deny the existence of any

structure that would correspond to the centralized reinforcement areas of animal brains.

Again, this criticism results from too literal a reading of our formulations. The environment

of an adaptive element includes the rest of the network as well as the external environment.

This network can implement mechanisms for generating element-level reinforcement. These

mechanisms may be centralized, distributed, or both.

Related Theoretical Fields

The research reported here is related to several theoretical fields. We indicated in an

early article (Barto, Sutton, and Brouwer, 1981) that the algorithms implemented by our

adaptive elements combine aspects of stochastic approximation algorithms and stochastic

- learning automaton algorithms. The precise relationship between these types of algorithms

appears not to be well understood mathematically, and we have not seen analyses within

either of these areas of the type of synthesis that we have been studying. Our research

indicates that the theorems appropriate for this synthesis are not simple consequences of

the theory in either area. However, our research did not originate within either of these

theoretical traditions, and there is much that we have to learn about them. This report

indicates the relationship between our work and these fields more carefully than did earlier
work. We hope that our results suggest novel directions for future research by speicalists

in these fields.

Another related theoretical area is Markovian Decision Theory (e.g., Derman, 1970;

Mine and Osaki, 1970). Our justification of the adaptive critic algorithm involves concepts

from this area, and we intend to explore these connections more fully in the future. At
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present, we do not know of algorithms similar to the adaptive critic algorithm other than

those of Samuel (1959) and Witten (1977), which are cited in the appropriate places in

Section 6.

Overview of the Report

Sect ion 2 presents results of our experiments with layered networks applied to nonlinear

learning problems. These networks adaptively create new features by combining existing

features. Also included is a brief review of past layered-network studies that serves to place

our own approach in perspective. Section 3 describes experiments with nonassociative

reinforcement learning. By excluding the associative aspect, we are able to focus on

~* '.~*the basic search problems and to compare a number of algorithms, including several well-

studied stochastic learning automaton algorithms. We propose a new type of algorithm and
... present results that strongely suggest its superior learning rate. In Section 4 we extend the

* algorithms discussed in Section 3 to associative reinforcement learning tasks. We describe

experiments that compare a number of algorithms on a number of tasks. These results show

that some apparently intuitively satisfying algorithms have serious difficulties compared to

other algorithms. We describe some new algorithms that overcome these problems. The

experiments of Section 5 deal with the effects on learning of delayed reinforcement. These

results generally support the expected consequences of delayed reinforcement but also

reveal specific limitations of certain types of algorithms. Section 6 provides justification for

the design of an adaptive heuristic critic element for implementing secondary reinforcement

and illustrates its utility in a learning task requiring the system to learn to balance a pole.
*Section 7 contains cocuigremarks.

concludin



Section 2

LAYERED NETWORKS

AND THE GENERATION OP NEW FEATURES

Introduction

- When they were first studied, adaptive networks seemed to offer the promise of provid-

ing a means for adaptively creating novel features with which to represent a given problem.

Even if each adaptive element could only adjust the weightings of its existing input chan-

nels, other adaptive elements supplying the signals on these channels could conceivably

redefine the meaning of these signals in a manner appropriate for the problem at hand.

Unfortunately, despite considerable effort, this promise of adaptive networks has not yet

been convincingly demonstrated. Another way of stating the problem is that although

networks of linear threshold elements can be constructed to implement any input/output

function, there has never been a satisfactory solution to the problem of having a network

efficiently learn to implement desired nonlinear functions whose implementation details

are initially unknown. In particular, learning algorithms that work for sinfle layers of

adaptive elements cannot be easily extended to multilayer networks. Yet if one wishes

to use adaptive network. to provide problem-solving systems with open-ended represen-

tational capabilities, the problem of obtaining learning in complicated networks must be

solved. We therefore view the problem of learning in multilayer networks to be central to

the problem of establishing the utility of adaptive networks.

In this section we describe some results of our experiments with layered networks of

goal-seeking components. These results provided initial indications that networks consist-

ing of these types of components are able to learn to implement desired nonlinear functions

by creating useful new features. Although further research is needed to 1) optimize ele-

ment design for use in layered networks, and 2) investigate this behavior for larger, more

complex problems, these initial results indicate that the approach we are taking may have
the potential for circumventing this classical problem with adaptive networks.



Briefly, we view the difficulty in obtaining learning by multilayered networks to be

* . chiefly due to the difficult structural credit-assignment problem (see Section 1) that exists

* for complex networks. Somehow, evaluations of the behavior of the entire network must be

apportioned correctly to the individual elements, and to the individual weights, that were

responsible for that behavior. Rather than designing a centralized agent that knows enough

about the network to correctly apportion credit, our approach is to endow each adaptive

element with learning capabilities that are sophisticated enough to enable it to increase itl

own performance in the face of considerable uncertainty by using any information that is

locally available. Uncertainty is present since the influence of any single element on network

evaluation will generally not be deterministic from that element's point of view. With a

* few exceptions, adaptive elements studied in the past were not designed for this type of

task. * We think that the ability of network components to perform well in associative

renforcement learning tasks under uncertainty is a prerequisite for obtaining nontrivial

learning by complex networks.

There is an extensive history of attempts to extend single-layer learning results to

networks having multiple layers. We first briefly review these studies in order to extract

general principles and to place the approach that uses goal-seeking elements in its proper

context. We then review the results we have obtained for layered networks.

* Review of Layered Network Studies

Assume that a multilayered network has been designed by defining the output of each

element as a parameterized function of its input, and by specifying all of the interconnec-

tions among the elements. The question that is associated with learning in such a system

is: What values should be assigned to the parameters of the network in order to imple-

ment some desired input/output function? Numerous approaches have been taken to this

problem.

L One of the resnlts reported in Section 4 is that those few adaptive elemeuts that were dusigmed for
this type of task are Dot very good at solving it.
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Direct Search - The most straightforward approach is to directly search the space of the

network's parameters for those values that maximize some measure of network performance

(e.g., a measure that is maximized when the classification errors of the network's output

elements are minimized). Gilstrap (1971), who has pursued this direct-search approach,

used guided random search methods that can be effective under conditions encountered

with multilayered networks. These conditions are high dimensionality of the parameter

space, multimodality of the evaluation function (i.e., the existence of "false peaks'), and

noisy input information.

Whatever the search method used, however, directly searching a space of dimension

equal to the number of parameters in an entire network is an extremely time-consuming

process for all but the simplest cases. This direct-search strategy is not suited to real-time

learning, not only because it is slow, but also because it requires a centralized control

strategy and off-line evaluation of network performance. The view of the problem adopted

* -in this approach does, however, provide a formal view of what needs to be achieved (or

approximated) even if it does not lead directly to practical, real-time algorithms.

Single Adaptive Layer - Results from early adaptive network research concern layered

networks in which the elements of only one layer can adapt. An example of such a network

is the Perceptron of Rosenblatt (1962). The Perceptron is a two-layer network (three-layer
in Rosenblatt's terms) in which the elements of the first layer are connected randomly to

the lowest-level pattern features (the binary pixels of a visual pattern). The idea is that

if enough elements were so connected, a representation would be implemented that would

permit the second layer to linearly form the required discrimination via an error-correction

learning procedure. Another example of a layered network having a single adaptive layer

employing an error-correction algorithm is the network of Adalines defined by Widrow

(1962).

There are obvious difficulties in extending these error-correction techniques to lay-

ered networks. Let us distinguish a network's output elements from its interior elements.

Output elements are those whose activity is directly visible to the network's environment

and that are required to assume certain values for various input patterns provided to the

17
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network. Interior elements are those whose activity is not directly visible and that are

somehow to provide an encoding of input signals that will allow the output elements to

respond correctly. The Achilles' heel of pure error-correction elements as network com-

ponents is that they can only learn if supplied with individual desired responses or error

signals. Although in many tasks it may be possible for the network's "teacher" to provide
error signals to the network's output elements (since it is these that define the network's

visible response), it may not be possible for this teacher to provide analogous error signals

to the interior elements without a priori knowledge of the implementation details of the

desired input/output function. If this knowledge were available, then the problem would

be quite different from the ones in which we are interested: It would be a programming

problem, not a learning problem. *

A variety of methods have been proposed in which error signals for interior elements

are inferred from error signals available for the output elements. One can view some of

the methods described below in this way.

Generating New Elements - Some methods rely on the generation of new elements

rather than on the adjustment of the parameters of existing elements. Methods that

generate new elements generally' divide the learning process into two stages. In the first

stage, the parameters (weights) of the first layer (i.e., the layer that directly receives the

external input signals) are held constant while one of the familiar single-layer learning

algorithms is used by the second layer. In the second stage, the second layer is held

constant while new elements are added to the first layer. Those elements whose outputs

are not significantly influencing the second layer might be discarded to limit the number

of elements.

Selfridge's Pandemonium provides an example of this two-stage learning process (Sel-

By this remark we do not mean to deride efforts to program network architccturcs to produre real-
time solutions to difficult computational problems. Much of the current reslirgence of interest in
the network approach stems from these demonstrations of network utility; for examplk, Fcldman
(1981) and Ballard's (1981) work on networks for low-level, real-time vision; Hinton's (1981) work on
knowledge representation; and Rumelhart and McClelland's word recognition network (McClelland
and Rumelhart, 1981; Rumelhart and McClelland, 1982).

18
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fridge, 1959). The second stage begins with the discarding of Layer-i elements of low

worth, which Selfridge defined as the sum of an element's output weights, i.e., the weights

through which the element's activity reaches other elements. Two methods are used for

replacing low-worth elements, called "mutated fission" and "conjugation." Mutated fission

consists of randomly selecting one of the remaining Layer-i elements and altering some

of its parameters, also at random. To form a new element by conjugation, two of the

remaining elements are randomly chosen and logically combined by selecting one of ten

nontrivial logical functions. An element is added that computes this logical function of

the output of the two chosen Layer-i elements. The classifier system of Holland (1980) is

probably the most highly developed example of generating new elements via this type of

* ~ genetic recombination" process.

Klopf and Gose (1969) compared three methods for measuring the worth of the ele-

ments in the first layer of a two-layered pattern recognition network. One method is to use

the size of an element's output weight as a measure similar to Selfridge's worth function.

The second method is to use the product of the output weight and the element's output

value. A third method is to use the absolute value of the cross-correlation between ..he

output of the Layer- I element and the desired network output. Their results show that for

the tasks they considered the product of the output weight and the output produces better

performance than the output weight alone, and both are better than the cross-correlation

measure.

In addition to these examples, many other systems employing similar principles have

been applied to the problem of feature selection in the pattern recognition domain. In some

cases, a repertoire of possible features is set up initially, and new features are chosen from

* this set (e.g., Samuel, 1959). Often a method of feature ranking is employed to determine

* the relative usefulness of features for a particular problem.

Beam Search - Methods for generating new elements are attempts to avoid the com-

binatorial explosion that would result from having an element for each of the possible

combinations of available signals. The heuristic employed is that useful higher-order fea-

tures will tend to be compositions of useful lower-order features. A technique using this



heuristic may be viewed as a type of beam search (see Barr and Feigenbaum, 1981). The

search is conducted by forming all pairwise (for example) combinations of lower-order fea-

tures at each stage, and then removing from consideration all but a certain number of

them before forming the next stage's combinations. At each stage, the number of features

remaining is the beam width of the search. A beam search is not guaranteed to result in

an optimal solution but can be efficient if the beam is sufficiently narrow.

* Although not usually associated with networks of adaptive elements, beam search can

obviously be related to layered networks. Ivakhnenko's (1971) Group Method of Data

Handling, for example, is a method for constructing a layered network using what is essen-

tially a beam search. He assumes that a set of desired situation-response pairs is available

a priori. This set is divided into a training set and a testing set. The algorithm proceeds

by developing one layer at a time. For the first layer, the original input components are

divided into disjoint pairs, each of which is represented by an element that computes a

quadratic polynomial of that pair of components. A regression technique is used to deter-

mine the coefficients of each polynomial for which the polynomial best approximates the

desired mapping defined by the situation-response pairs in the training set. The testing

* set is then used to calculate the mean-square error for each element, and elements with

an error above a specific threshold are discarded. Now the outputs of the remaining ele-

ments become the input components to the next layer, and the procedure is repeated to

determine the polynomials and their coefficients for the elements in the second layer. The

process is repeated for successive layers.

Since Ivakhnenko's method employs a centralized control structure both to select el-

ements and to perform the regression analysis, it is not an adaptive network of the sort

* we are studying. Nevertheless, the principle it illustrates (i.e., the idea of beami search) is

very well suited to completely parallel implementation by networks of adaptive elements.

Open-loop Adjustment - Another approach is to train the first layer of a two-layered

network in isolation, independently of the second layer and of the network's perform ance

on the required task. Such open-loop procedures are referred to as cltustering methods.

Clustering methods are based on certain assumptions, of which the most common can be
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expressed for layered networks as the assumption that the input patterns experienced by

the network tend to be similar, according to some prespecified measure, to those in one

of several sets of input patterns, or clusters. The dimensionality of a problem can be

reduced if the elements of the first layer specify which cluster the current input pattern

belongs to and present only the cluster label to the second layer rather than the original

representation of the input pattern. This assumes that the same response is desired for all

patterns that are members of one cluster.

Block, Nilsson, and Duda (1964) used a clustering algorithm to train the first layer of

a two-layered network. They suggested that their method should be used to fully train

the first layer before the second layer was trained. Fukushima's Cognitron (1973) and

Neocognitron (1980) are other examples of clustering algorithms implemented as networks.

In these networks, the elements within a single layer are arranged in an array, and an

element is selected for adjustment if its output is sufficiently in excess of the outputs of

the neighboring elements. Several such elements are selected from each layer. The weight

associated with each element input pathway is adjusted so as to place its value closer to

* the current value of the input signal on that pathway. This causes the weight vector to

more closely match the current input pattern.

In these examples, and others, one can see a common problem and similar mechanisms

for dealing with it. If the network elements use the same learning algorithm and are

presented with the same patterns, then they will tend to respond to, and thus to represent,

the situations of the same cluster. To force the elements to tune to a variety of clusters,

some form of additional communication between the elements must be included. This

communication is usually used to suppress the learning mechanisms in untuned elements

for any situation that is already represented by a previously tuned element. In more
"neural" terms, this can be described as a type of lateral inhibition, and there are many

models that use this type of mechanism. We refer to the general problem as one of

enforcement of vJariety.
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Adjustment Based on Performance - Some open-loop methods, e.g., that of Block

et al. (1964) mentioned above, only stop once a set of clusters has been found from which

all of the experienced input patterns can be reconstituted. This implies that possibly very

many clusters, and thus elements, are required. Certainly, for many problems such a large

set is not necessary, specifically for problems whose solutions do not associate a different

response with each input. Only those features that discriminate between inputs requiring

different responses need to be developed by the elements in the initial layers. In other

words, the need is not just to form clusters of input patterns but to form clusters that are

useful in terms of the network's interaction with its environment. In order to accomplish

this, the initial layers must use the information contained in an error or evaluation signal

* that is provided by the network's environment. The problem, as discussed above, is

that this error or evaluation is directly a function only of the network's output elements.

Somehow this information must be used to tune the interior elements.

The simplest way of doing this is to aust a randomly chosen element when an error

is made by an output element. This approach was analyzed by Alder (1975) who proved

an extension of the Perceptron convergence theorem for layered networks. As he pointed

out, however, the algorithm was 'less than efficient."

Another method for selecting elements to adjust is to select those elements that would

require the least amount of change to correct the network's error. Widrow used this method

in networks consisting of two layers of Adalines (1962). Two notable characteristics of

Widrow's method of training two-layered networks are: (1) the first layer learns faster

than the second, and (2) responsibility for error is assigned to those elements that can

most easily correct it. This algorithm and similar ones (e.g., Stafford, 1963) require a

rather sophisticated agent to conduct the training of the interior elements.

In some cases, the sophistication required by this agent can be reduced if the networ-k

structure -is sufficiently constrained. Widrow's (1962) study of Madalincs (Multiple Ada-

lines) can be interpreted in this way. A Madaline is a single layer of Adalines and an

additional element in a second layer that computes a fixed logical function of the output

S signals produced by the Adalines. The output of this element is the network's response.
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Typical logical functions are majority-rule and logical OR. The method of training the

Madaline depends on the logical function that is used. For txample, the following procedure

is used if the second layer consists of a majority-rule element. An input pattern is presented

and the Madaline's response is compared to the desired response. If they are equal, no

adaptation occurs. If the desired response is +1 and a majority of the Adalines generated

-1, then enough of those Adalines are adjusted to change the majority decision from -I

to + I. The Adalines selected for adjustment are those that made the wrong response and

whose weighted sums, before thresholding, were closest to sero. For a desired response of

- the same procedure is followed using the opposite signs. Widrow described this process

as a way of assigning responsibility to those elements that could 'most easily assume it.'

- Methods that appear related to this have been discussed by Reilly, Cooper, and Elbaum

(1982) and Hampson and Kibler (1982) and seem to offer promising ways of using networks

for nonlinear pattern classification.

Networks of Reinforcement Learning Elements - Some of the aforementioned

methods represent attempts to extend error-correction methods to all elements of the

,. network, for example, by restricting network operation so that desired responses for interior

elements might be deduced. Another approach is to use elements that do not require

desired responses or error signals but that implement reinforcement-learning algorithms.

Such elements are capable of improving performance with respect to an evaluation signal

that assesses the collective activity of all of the network components. Since the activity of

any individual component does not have a deterministic influence over the global evaluation

signal, each element must be able to learn under a high degree of uncertainty, and the entire

process requires -statistical cooperation" (Farley and Clark, 1954) among the network

elements.

Our own approach and that of Klopf (1972, 1982) fall into this category, and we know

• ,of only a few earlier studies that are similar. In his Ph.D. thesis, Minsky (1954) described

the SNARC (Stochastic Neural-Analog Reinforcement Calculator) which he constructed

in 1951. It was a network of adaptive components that roughly corresponded to synapses

74 rather than to entire neurons. These components transmitted incoming pulses according to
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. a probability that was altered by subsequent global evaluation. If a pulse was transmitted

and reward followed, then the transmission probability was increased, etc. In modern ter-

minology, each "synapse' was implemented as a stochastic learning automaton (Narendra4 .

and Thathachar, 1974). Minsky applied his network to a maze-learning task and noted

that it "displayed gratifying ability.' Farley and Clark (1954) experimented with adaptive

elements that are very similar to our adaptive elements. They have a set of adjustable

weights, emit activity generated by a noisy threshold, and use a similar weight-update

rule. In simulation experiments, networks of these elements were able to solve some simple

discrimination tasks.

Both of these studies predated any use of error-correction learning rules in network

studies. Colisequently, Minsky, Farley, and Clark were not attempting to solve the layered-

network problem since it had not yet surfaced. Their networks were layered (in fact,

they were recurrently connected), and they did appear to learn effectively (although no

systematic exploration of these abilities was undertaken). This approach using statistical

cooperation seems to have been quickly overshadowed by an interest in the generalization
capabilities of these networks - an interest that contributed to the development of the

field of pattern classification. Farley and Clark (1954), for example, paid no attention to

the fact that the interior elements of their network were capable of learning but instead

focussed on generalization ideas which by now have become routine.

"4. Minsky, on the other hand, seems to have been impressed with the potential diffi-

culty of the credit-assignment problem inherent in this approach. As tasks become larger

and more difficult, the unstructured statistical cooperation approach becomes inadequate.

Heuristics more powerful than "recency" and "frequency" need to be employed to assign

credit or blame to individual components of a decision-making process. He proposed the

development of secondary reinforcement mechanisms and the use of some rich, local form

of reinforcement (Minsky, 1961). He was aware, however, of the relevance of reinforcement

learning for layered networks. Minsky and Papert (1969), for example, remarked that

It ought to be possible to devise a training algorithm to optimize the weights of this

[layered networki using, say, the magnitude of a reinforcement to communicate to the net
the cost of an error. We have not investigated this. (p. 206)
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We continue to find Minsky's early remarks on the problems of adaptive networks to be

very penetrating, and they have obviously influenced our own approach.

Widrow, too, became aware of the relevance of reinforcement learning for layered

networks. Widrow, Narendra, and Maitra (1973) presented an extension of the Adaline

algorithm to allow it to do a form of reinforcement learning which they called "bootstrap

adaptation.' They remarked that this extension may permit the elements to learn as

components of layered networks, but we know of no attempts to demonstrate this.

The approach proposed by Klopf (1972, 1982), in which components are seen as self-

interested agents, also falls into this category. By formulating the goal of these self-

interested agents as the maximization of certain variables (a condition Klopf calls "het-

erostasis' to distinguish it from homeostasis, which refers to an equilibrium condition),

Klopf identified one of the key distinctions between supervised learning and reinforcement

learning. Klopf also clearly pointed out the importance of this type of learning for layered

networks.

Statistical Mechanical Methods - Before concluding this review of layered-network

studies, it is appropriate to mention recent research that is relevant to the problem of

learning in layered networks. Several researchers are currently studying networks of neu-

ronlike elements that operate probabilistically and can be analyzed by methods analogous

to those of statistical mechanics (Hopfield, 1982; Hinton and Sejnowski, IS83; D. Geman
*. and S. Geman, 1983; S. Geman, 1984). It is not yet clear exactly what relationship exists

between these methods and those discussed in the previous subsection requiring statistical

cooperation. It is also too early to evaluate the utility of these methods (they may be too

slow to yield practical real-time algorithms). They are very intriguing, however, and may
help provide a much needed theoretical basis for the study of adaptive networks.
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Layered Networks of Goal-Seeking Components

From the overview of approaches to learning by layered networks provided above, it

is clear that the approach we have studied might be regarded as a continuation of the

statistical-cooperative approach that was pursued very briefly by earlier researchers. We
believe the sparsity of these studies is not due to any special difficulties of this approach

as compared to error-correction approaches, but rather to historical circumstances and to

the general misunderstanding that existed (and continues to exist) about the distinction

between reinforcement learning and error-correction learning (see the discussion in Section
1).

Using the idea of self-interested, goal-seeking components developed by Klopf (1972,

1982), we are able to view the problem of learning in layered networks in terms of the

notion of cooperativity from the theory of games. Consider, for example, a two-layer case
in which elements of Layer I receive input from the external environment buo are not

able to directly influence that environment. These elements can only influence Layer-2

elements which, in turn, are able to influence the environment but do not receive neutral

(i.e., nonreinforcing) input directly from the environment. All elements receive the same

reinforcement signal. To attain higher levels of reinforcement, Layer-I elements 'need"

Layer-2 elements because without them Layer-I elements have no influence over the rein-

forcement signal. For their part, Layer-2 elements need Layer-I elements because without

them, Layer-2 elements have no clue as to the state of the environment. Without this in-

formation, the relationship between the actions of Layer-2 elements and reinforcement will

appear to have few regularities. If Layer-I and Layer-2 elements can correctly coordinate

their behavior, they each can enhance their own reinforcement levels. This is a form of

cooperation in the game-theoretic sense.

Cooperativity can be achieved by statistically linking the activity of Layer- I and Layer-

2 elements. For example, a positive weight from Layer-I element A to Layer-2 element

B would increase the relative frequency of patterns of activity in which both A and B

were active. We could say that A and B had entered into an agreement or had formed

a partnership. The weight-update rules we have been studying are designed to alter the
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weights so that such agreements would be mutually beneficial to the elements involved. So

linked, the elements A and B would form a coalition. O; course, since layered networks

lack internal feedback pathways, we would see the formation of only restricted types of

coalitions.

We now describe several computational experiments that we performed using layered

networks.- Among other things, these experiments illustrate this type of cooperativity.

- Additional details of these experiments, and descriptions of additional experiments, can

be found in Barto, Anderson, and Sutton (1982) and Anderson (1982). After describing

these experiments, we discuss their significance, some problems encountered, and their

consequences for future research.

Description of the Task@

The solution to the type of problem we considered requires a learning system to produce

the "best" action for every input from its environment. This general formulation is shown

in Figure 1. The current state of the environment determines the input to the system,

which then applies its situation-to-action mapping (its control surface) to generate an

action. The action then affects a change in the environmental state, which causes a

change in network input. The critic evaluates the new input by computing a performance

index, payoff, or reinforcement, based on the input or how the input is changing. The

reinforcement is used to alter the system's mapping. After an appropriate mapping is

learned, the reinforcement input is no longer required. The situation-to-action mapping

is divided into an adaptive feature encoder and a feature-to-action mapping as in Figure

2. Note that the same reinforcement goes to both the adaptive feature encoder and the

adaptive feature-to-action mapping.

This type of learning problem is greatly simplified compared to more general problems

by the availability of a reinforcement signal at every time step that always evaluates the ac-

tion made at the preceding step. In more general problems, an evaluation may be received

w.. only after the learning system has performed a long series of actions, thus introducing a
•: .difficult temporal credit-assignment problem. We temporarily adopted this simplification

to allow us to focus on basic feature-generation issues. In Sections 5 and 6 we describe our
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General View of a Reinforcement-Learning System.

: research on the credit-assignment problem created by delayed evaluation of actions.

~We have found that an interpretation of the above type of problem as a type of spatial
~learning problem (which we termed a 'landmark-learning problem" in Barto and Sutton,

j 1981a) provides an easily visualized setting for studying some of the concepts that will be

' useful in more difficult tasks. In particular, one can regard the 'space' in question as the

state space of a dynamical system.

Nonlinear Landmark-Learning Problems,

We briefly describe the simple linear landmark-learning problem anld the single-lae~yr

network capable of solving it that was presented by Barto and Sutton (1981a)."* We

then describe an extension of this problem to one requiring a two-layer network for its

"Our presentation here differs slig~htly from that of Sutton and Barto (1081a). The symbols for the
landmarks and the ordering of sensory input pathways to the network are different.
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Figure 2

Addition of Adaptive Feature-Encoding Mechanism.

solution. Figure 3A shows the environment of a simple "organism" which is represented

by the asterisk. The tree in the center of the figure is the organism's target and emits

an "attractant odor" (the payoff or reinforcement) whose strength decays with distance

from the tree. Each of the landmarks at the cardinal points also emits a distinct "odor,"

decaying with distance, that does not act as an attractant (i.e., is neutral) but can serve as

a cue to location in space. The organism's task in this environment is to approach the tree

as efficiently as possible and remain in its vicinity. In order to do this, it acquires a control

.. surface that tells the organism which way to go from every place in its environment. The

inputs to this controller are the patterns of "odors" from the neutral landmarks and the

central tree, and actions determine movement in space. Once in possession of an adequate

.control surface, the organism can use it to move directly to the place where the attractant
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:"" peak usually appeared even in the complete absence of the attractant distribution.

The organism's "nervous system" is the four-element network shown in Figure 3B. The

four adaptive elements control motions in the respective cardinal directions. The control

suface is stored as a matrix of weights connecting the neutral landma rk inputs with the

Aa

• . action-generating elements. The weights between input and output elements are shown as
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circles centered on the intersections of the input pathways with the element "dendrites."

Positive weights appear as hollow circles, and negative weights appear as shaded circles.

The size of a circle codes the weight's magnitude. The action commanded by the network

* . is to move north if Element 1 fires, south if Element 2 fires, etc. In case two nonopposing

elements fire simultaneously, the appropriate compound move is made, e.g., northwest.

Each move is a fixed distance and is always completed in one time step.

The weight associated with an input pathway from a given landmark to an element

controlling movement in a particular direction increases if a step in that direction is taken

in the presence of that landmark's signal and the resulting movement is up the attractant

gradient. With sufficient experience, the organism learns respond to the "olfactory" cues

at each place with the action that is optimal for that place. The operation of this network
~. ~..is fully described by Barto and Sutton (1981a). Figure 30 shows the network after it

formed appropriate weights, and Figure 3D shows the results of learning as a vector field

-' giving the expected direction of the network's first step for each position in space. This

vector field is determined from the network's weight values and is never literally present

in the environment.

In another experiment described by Barto and Sutton (1981a), the "organism" was

allowed to learn in the environment just described, and then the box shaped landmarks

were interchanged. The "organism" was initially misled by its sensory information but

I.. '..quickly relearned to the altered environment. Figure 3E gives the vector field showing

how the "organism" was misled, and Figure 3F shows the network after it had relearnedl

to the exchanged landmarks. When we changed the environment back to its original

configuration, the network changed its associative matrix back to the original settings.

Thus, it is clear that the network as described is not capable of maintaining both control

surfaces at the same time. As it learns in an environment with a different configuration

of the same landmarks, it "rewrites" its memory, erasing traces of previous learning. This

suggests the following task, which turns out to be nonlinear in terms of the landmark

signals.
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The Two-Environment Landmnark-Learning Problem - Figure 4A shows an envi-

ronment containing two areas labeled "Region A" and "Region B." Corresponding land-

marks produce the same sensory signals in both regions (e.g., the shaded box 'smells" the

same in both regions), but sensing a box landmark should produce movement in opposite

-: - directions in the two regions. That is, "hollow box in Region A" should be associated with

movement east, but "hollow box in Region B" should be associated with movement west.

Similarly, the correct associations for the shaded box depend on the region in which it is

* sensed. We considered the case in which there exist features, detectable by the network,

that distinguish Region A from Region B. In the most general case, these distinguishing

features may be complex patterns or relationships between more basic features, but for

simplicity, and without undue loss of generality given our purposes, we simply assume

that there is a sensor that is activated whenever the system is in Region A and one that

is activated whenever it is in Region B. A signal from one of the region sensors must be

capable of switching the effects of the two box landmarks on the east and west output

elements 1hi opposite senses. This cannot be accomplished by the sort of linear mapping

the network shown in Figure 3B is capable of forming (this is proved in Barto, Anderson,

and Sutton, 1982; the problem requires the computation of an analogue of the logical

exclusive-or operation).

A signal is needed to distinguish the sensing of a landmark in Region A from the

sensing of that same landmark in Region B, but we wished a network to form this signal

4 on the basis of its experience rather than being provided with it from the start. Figure 4B
a.-.'*shows a network consisting of two layers of adaptive elements. The output layer (Layer

2) shown at the bottom is identical to that shown in Figure 3B except that it has eight

* rather than four input pathways in addition to the reinforcement pathway. The input layer

(Layer 1) consists of eight adaptive elements each receiving input from the four landmarks,

the Region A and Region B indicators, and the reinforcement signal.

The eight elements of Layer 1 are organized in pairs: Elements I and 2, Elements 3

and 4, etc. The elements in each pair inhibit one another so that only the most strongly

stimulated element of each pair can be active at any time. The large positive connection

weights in Layer 1 are all set permanently to the same value. Con~sequently, before any
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Two-Environment Landmark-Learning Problem.

learning takes place in Layer 1, the Layer-i elements simply transmit the Layer-1 input

signals to Layer 2, sometimes via one element of each pair and sometimes via the other

(so that this network can also solve the linear problem described above). If the task

cannot be solved linearly, then the paired elements differentiate, or "split," in terms of

the input patterns to which they are tuned and the influences they exert on Layer 2. The

Layer-2 elements are also paired so that at each time step only one element in each of the

north/south and east/west pairs is active.

We first placed the network in Region A where it climbed the attractant distribution

due to the presence of the tree and produced the trail shown in Figure 5A. At the same

time, it formed associations between its stimulus patterns and the optimal actions. These

associations are shown as a vector field in Figure 5B. Notice that the associations are correct

for Region A but are incorrect for Region B. This is because the network's generalization
from its experience in Region A to Region B is inappropriate due to the reversed box- %.

V landmarks. The network that resulted from this experience is shown in Figure 5C. There

was a tendency for one element of each of the Layer-i element pairs to become tuned to
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respond strongly to various patterns of landmark "odors" in Region A and less strongly to

V these patterns outside of Region A (since positive weights form from the Region A sensor

to these elements). These elements initially happened to be acti-ve more frequently and,

as they began to be excited by the Region A input pathway, their probabilities of activity

steadily increased. During this period, the connections from these elements to Layer 2

were established in a manner appropriate for moving in Region A. Thus a control surface

appropriate for directing action in Region A was formed.

When the organism was then placed in Region B, the Region A control surface was

accessed initially since the Layer- I elements that were tuned to respond strongly to certain

"odor" patterns in Region A also responded to these patterns in Region B, although less

strongly. This resulted in the trail shown in Figure 5D and can be seen as the network's

attempt to generalize its Region A experience to Region B. Having been placed north of

the shaded circular landmark, the network proceeded almost directly south and west as a

result of being correctly directed by the shaded circle and incorrectly directed by the hollow

box. These actions were punished since the network moved down the attractant gradient in

Region B. This tended to "erase" the Region A control surface. However, this also caused

inhibitory connections to form from the Region B sensor to the elements selected in Region

A. This steadily decreased the probability with which the elements selected in Region A

became active in Region B. Then, whenever activation switched to the untuned element of

a pair (and the probability of this steadily increased) and the network happened to mnove in

the correct direction, then this element began to be tuned to respond to an "odor" pattern

in Region B and therefore began to provide a signal to Layer 2 that could be associated

with the correct actions for Region B. Consequently, the erasure of the Region A control

information eventually stopped as new associations were formed appropriate for Region

B (Figure SF). Continued exploration resulted in the formation of the associations shown

S in Figure SE as a vector field. New experience in Region A quickly reinstated any lost

information (Figures 5G, 5H, SI).

By examining Figure SI, one can see that the Layer-i elements tuned themselves to

represent the environmental features as follows:
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Element 1: unused

Element 2: shaded circle in both regions

Element 3: hollow box in Region A

Element 4: hollow box in Region B

Element 5: unused

Element 6: hollow circle in both regions

Element 7: shaded box in Region A

Element 8: shaded box in Region B

Layer 2 can therefore generate the appropriate actions even though these actions are re-

stricted to being linear functions of its input patterns. Although this process sounds com-
plicated, it occurred with great reliability and was not particularly sensitive to parameter

values.

Figure 5J shows the network behavior as the information was used that was stored

during the experiences we have described. Both trees and their attractant distributions

were removed, and the network started from places it had never before visited. Its path

in each region shows direct approach to the former location of the tree.

The Creation of Landmarks

Layer 1 of the network described above might be regarded as havng "created" land-

marks in the sense that it came to provide conjunctions of some of the original landmark

signals with the region signals, that is, it created the landmark "hollow box in Region A,*

etc. The experiments we describe now were attempts to provide a more rich substrate of

original signals out of which to create landmarks.

-: Figure 6 shows the structure of another two-layer network. The second layer of the

network consists of four adaptive elements, each of which receives the reinforcement and

* the features r, through 79 from the first layer and computes a component of the output
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vector (here, the output vectors are represented as (+dzl, -dzl, +dz 2, -dz 2 )). Layer 1 of

the network receives the reinforcement and the input vectoi ( z 1 , z2 ) giving the coordinates

of the network's current location in space, and computes the values r, through rg, which

are the components of the input vector to Layer-2. Each element of Layer 1 has the

potential for representing a certain type of landmark.

471 I LZIIJL IIZ]III IILI
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Figure 6

Two-Layer Network.

Each component of the input vector (XiZ2) is quantized into six intervals, and 12

variables are defined such that they are maximal at the center of unique overlappirg

intervals. Figure 7 shows the "receptive fields" of these 12 features (by the receptive

field of a feature or element we mean the region of the input space for which the feature

or element produces a nonzero signal). Given (z1,z2), the value of q1,i = 1,.. .,6, is
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maximal when Z is the center of the interval corresponding to q,. and the value of

qi, i = 7,..., 12, is maximal when Z2 is the center of the interval corresponding to q,.

The values of the q, decrease as the points z, (or Z2) move away from the center of the

corresponding intervals (according to a Gaussian curve). The top six gaphs in Figure 7

show the variables used to represent z1 , and the bottom three graphs show three of the

six variables representing Z2. One can view these variables as providing the basis set of

landmarks out of which others can be constructed.

LAYER 0, ELEMENT 1 LAYER 0, ELEMENT 2 LAYER 0, ELEMENT 3

LAYER 0, ELEMENT 4 LAYER 0, ELEMENT 5 LAYER 0, ELEMENT 6

LAYER 0, ELEMENT 7 LAYER 0, ELEMENT 9 LAYER 0, ELEMENT 1?

Figure 7

Features Initially Provided to the Network.

The elements comprising this network learn according to a rule similar to the one

used in our other landmark-learning examples. Complete details are provided by Ander-

son (1982). An additional mechanism is employed, however, to prevent several Layer-i
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elements from redundantly forming the same feature. A method for enforcing variety is

needed. At each time step, the Layer-i element with the iargest output is selected as the

one that is eligible for learning. The other elements produce outputs that influence Layer

2 but do not change their weights. Although this selection procedure can be implemented

by well-known parallel, lateral-inhibitory mechanisms, we used standard programming to

* implement it (see Barto, Anderson, and Sutton, 1982, for further discussion and refer-

* ences).

Example 1 - We now describe the behavior of the system using a simple example. The

reinforcement function z is defined as shown in Figure 8. This figure contains the same base

plane as shown in Figure 7, but the height above the plane here depicts z, the reinforcement

function, which has a maximum at position (5,S). The task of the reinforcement-learning

system is to learn to generate in response to the input pattern generated at any position

the action that results in the next position being as close to (5,5) as the set of possible

actions permits. We set the position to (5,1) and ran the system for 700 steps. Figure

9 is a record of every fifth step, and the asterisk marks the final position. The system

successfully learned what actions to associate with each position it visited. This can be

seen in the vector-field display of Figure 10. Note the generalizaton to positions that had

not been visited. This mapping was refined by randomly selecting 500 additional starting

positions and running the system for one step in each. The resulting mapping appears in

Figure 11L

Figure 12 shows the final receptive fields of the elements in Layer 1. Elements 1, 3, 6

and 9 encode the only significant features that formed. This is more noticeable in Figure

13. In this network display, the weights in Layer 2 show that only four Layer-i elements

contribute to the action-selecting process.

In addition to viewing the elements as becoming tuned to certain input situations,

one can also view the elements as becoming tuned to certain compound output actions.

Whereas the weights on the input side of an element determine its receptive field, the
weights on its output side, through which its actions affect other elements, determine

its "projective field." From Figure 13, we can determine that the features computed by

~3
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Example 1: The Payoff Function.

Elements 1, 3, 6 and 9 of Layer I are respectively associated with the actions (+-dxi, -dz 2 ),

(-dzx, +dX 2), (-dzI, -dZ 2), and (+dxl, +dX 2). These elements have thus become very

simple examples of "command cells' that trigger a complex of actions. If a system like

this were being applied to the control of a two-jointed arm, for example, then activity in

these elements might simultaneously increase the angular displacements of both joints (a

very simple "synergy').

Example 2 - The purpose of this experiment was to demonstrate network performance

on a task for which the layered structure of the network is necessary. The reinforcement

function defining the task is shown in Figure 14. To obtain the largest reinforcement, the

system should learn to generate actions that result in movement toward position (2.5,5),

the payof function's maximum, and away from position (7.5,S), the function's minimum.
40
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_--:Figure 12

Example 1: Functions Computed by Layer-1 Elements.

.4.-
" 5-

.: networks, the experiments were too simple to allow us to conclude that we had solved the

iJJ problem of learning nonlinear mappings by layered networks in an extensible way. In par-

ticular, the networks were not deep enough to allow us to determine if they could robustly

implement a parallel version of a beam search. We regard these experiments as successful

initial studies of networks of goal-seeking components.

Two kinds of questions are raised by our simulations. One concerns network architec-

ture: How organized must the initial network be in order to support appropriate learning?

The other kind of question concerns the individual adaptive elements: Do adaptive ele-

~ments need more, or less, sophistication in their adaptive abilities?
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Example 1: Network Weights.

We indicated in Section 1 that our concern with networks of minimal a priori structure
.'. is not the result of any belief that learning begins with a tabula rasa. On the contrary, as

much knowledge as is initially available ought to be brought to bear on any task. We are

concerned with filling in the unspecified residue, which will be more or less depending on
the task. Therefore, we would like our networks not to be initially structured in a strongly
problem-dependent way. One of the difficulties with our two-environment illustration

is that the initial network appears to have been "set up" exclusively for that problem.

.-... The Layer-I elements were explicitly paired in order to "split" the landmark signals, and

"Region A" and "Region B" signals were conveniently supplied.

*i.: Obviously, the network was indeed set up for the given problem, but its design incor-
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Figure 14

Example 2: Payoff Function.

porates some general principles that are obscure due to the simplicity of the problem. The

"Region A" and "Region B" inputs do not play a specialized role in the learning equations
of the Layer-i elements. If it had been necessary for the problem's solution, the Layer-I

elements could have formed more complex discriminations based on several signals. We

regard the "Region A" and "Region B" inputs as leading to the simplest case in which the

regions can be distinguished by linearly separable patterns of input features. Although

the existence of these single signals does make the problem easier, it does not trivialize it

since the overall problem remains nonlinear.

The explicit pairing of the Layer-I elements, where only the most strongly activated

element of each pair learns, was used to enforce variety during the learning process. We

used a similar device in the second set of experiments described in this section, and we

described several other instances of this general idea in the above review of earlier research.
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number of elements in Layer 1 is the same as would be required if we just initially supplied

all of the possible conjunctions of landmark and region signals. In other words, in extending

this type of network to larger problems, we would not be avoiding the combinatorial

explosion of hardware units. There should be a way of permitting unused elements to enter
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Example 2: Functions Computed by Layer-1 Elements.

into whatever combinations turn out to be useful for solving the problem. Ideally, perhaps,

one would like an approach in which whatever hardware resources were available could be

allocated in a reasonably unrestricted way based upon the demands of the task (although

complete equipotentiality would not be necessary). In the two-environment network, on

the other hand, an unused element of one of the pairings could not be reallocated to act,

for example, as the third element of a three-way split of some other signal.

There are several approaches to solving this type of problem, some of which require

; .., -the elements to have more sophisticated adaptive capabilities. For example, an element's

weights might stabilize to the extent that the element is exerting an influence upon other

elements. Elements that are not "listened to" should retune themselves to other features.
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Example 2: Final Situation-to-Action Mapping.

A to guide its behavior in Region B. The relationships involving the boxes happened to

be inappropriate in Region B, but those involving the circles successfully generalized. The

network immediately moved south when placed in the northern part of Region B (Figure

5D). If separate variables for each landmark in each region had been supplied initially to

the Layer-2 network, then no use of the Region A experience would have been attempted

in Region B, and learning would have been slower.

Most importantly, all of the simulations described here show the formation of element

coalitions. First and second layer elements cooperated in order to obtain higher levels of

reinforcement than each element could obtain by acting alone. In this case, the coalitions

took the form of the linked pathways through the networks. Nonzero weights from Layer-I

to Layer-2 elements implied that the elements were no longer statistically independent in

their operation. For example, a large positive weight between Layer-1 Element A and

Layer-2 Element B meant that when A fired, B almost surely fired as well - to the benefit

of both elements.

Finally, we wish again to bring attention to the adaptive development of Layer-i ele-

ments' "projective fields.' Given adaptive Layer-1 elements (or, in general, adaptive inte-
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P nior elements), one can look at how they influence other elements as well as how they are

themselves influenced. We pointed out that several elements in Figure 13 have become

rudimentary "command cells" by becoming linked to compounds of primitive actions. The

opportunity to observe the development of this type of organization is absent in cases in

which only the network's output elements adapt. We think that this phenomenon will

be a key feature in obtaining efficient search performances in problems more difficit than

* those we have studied so far. The adaptive development of hierarchies of command cells

provides a means for giving necessary structure to a network's search strategy.

.,
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IntSectitno3

S In this section we begin the description of a series of simulation experiments designed

to help us better understand and refine the class of learning rules that we have studied.

The first series of experiments concern nonassociative learning tasks in which the only

signal the system receives from its environment is a scalar reinforcement signal. Such

tasks are nonassociative because there is no non-reinforcing, or neutral, input with which

* to associate actions. We also refer to these tasks as reinforcement-only taski. In these tasks

learning system must discover and consistently choose an action to maximize some measure

of cumulative reinforcement. These tasks allowed us to examine the relationship of our

0 algorithms to well-studied classes of nonassociative learning algorithms. The experiments

were designed to compare the convergence rates of a variety of algorithms across a variety of

nonassociative tasks. Although ideally one would like to analytically determine the relative

convergence rates of the various algorithms, in practice this is very difficult. We considered

a large number of algorithms and tasks, and convergence rates are very difficult to obtain

even in relatively simple cases. We are continuing, however, to pursue mathematical

analyses of the behavior of certain algorithms.

Search Under Uncertainty

We pointed out in Section 2 that the optimization problem faced by an individual

adaptive element that is deeply embedded in a network is characterized by a high degree

of uncertainty. The reinforcement feedback received by such an element at any time will

generally depend upon the actions of a large number of components taken at a variety of

earlier times. Consequently, a single element's actions will contribute to its own reinforce-

ment only in a statistical sense. Although a variety of measures need to be employed to

reduce this uncertainty (for example, the use of an adaptive critic as discussed in Section

6), we do not believe that it is possible to reduce it to an inconsequential level.
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The nonassociative tasks described here permitted us to focus upon search under un-

-' certainty in the absence of the confounding influences introduced by the formation of

associative mappings. These tasks also allowed us to draw upon the well-d-;-roped the-

. ory of search under uncertainty known as learming automata theory (LAT) in engineering

. "'"(Tsetlin, 1973; Narendra and Thathachar, 1974; Lakshmivarahan, 1981) and mathematical

learning theory (MLT) in psychology (Bush and Mosteller, 1955; Bush and Estes, 1959;

*Luce, Bush and Galanter, 1963, 1965; Atkinson, Bower and Crothers, 1965).

In LAT, an automaton interacts with an environment that evaluates its action in a

probabilistic manner. If the automaton has n actions, then the environment is character-

ized by n reward probabilities, each of which specifies the probability that the automaton

.". *.will receive a reward signal as a result of performing one of its possible actions. The

optimal action is the one corresponding to the largest reward probability. Initially, no in-

formation is assumed about which action is optimal. In the case of a stochastic automaton,

the automaton selects an action according to a probability function, receives the environ-

* ment's response, and changes its action probabilities based upon that response. The next

action is then selected according to the new action probabilities, and the process repeats.

.- A stochastic automaton that improves performance, in the sense of increasing its expec-

tation of reward, is called a stochastic earning automaton (Narendra and Thathachar,

1974). Note that due to the uncertainty in the feedback, even for the case of two actions

this search task is highly nontrivial (whereas it would be trivial for deterministic environ-

S'- ments). This type of problem has also been called an "n-armed bandit problem" (e.g.,

Bradt, et al., 1956; Cover and Hellman, 1970).

- Several measures of performance have been proposed, and many algorithms have been

studied. Stochastic learning automaton algorithms usually perform global search and

therefore cannot become trapped on local optima. Unlike hill-climbing algorithms, for

example, they do not search by trying actions that are near previous actions. Actions

are not related to one another in terms of nearness, or in any other sense. Since they

are not local gradient methods, stochastic learning automaton algorithms typically do not

-::. incorporate explicit comparisons of current reinforcement level with past reinforcement

levels, as do hill-climbing algorithms. Within the stochastic learning automaton frame-
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work, it is not useful to estimate the change in reinforcement as a function of change in

action. It may nevertheless be useful for such an algorithui to compare current reinforce-

men . with past reinforcement levels. We call such algorithms reinforcement-comparison

algorithms. Current learning automaton research is largely restricted to algorithms that

are not reinforcement-comparison algorithms (which we call non-reinforcement-comparison

-algorithms). We have recently become aware, however, of several algorithms discussed by

Mars and Poppelbaum (1981) that are reinforcement-comparison algorithms. We have not

yet investigated the relationship between these algorithms and our own.

Most of the work on reinforcement-learning systems with neutral as well as reinforcing

input has been done with non-reinforcement-comparison algorithms derived from those

studied in LAT and MLT. This is the reason we were particularly interested in mak-

ing a comparison between reinforcement-comparison and non-reinforcement-comparison

algorithms. We hoped to establish whether or not reinforcement-comparison techniques

improve performance. MLT and LAT have demonstrated that non-reinforcement compar-

ison algorithms are capable of eventually solving reinforcement-only problems. Several

forms of asymptotic optimality - optimal or near optimal performance of the algorithms

as time goes to infinity - have been shown for the non-reinforcement-comparsion algo-

rithms considered in these fields. However, in practice, rate of convergence is of critical

importance, and proveably (near) optimal algorithms tend to be very slow in converging

to optimal actions.

In this section we present the results of a series of computer simulations of 10 learn-

'V ing algorithms applied to 6 reinforcement-only tasks. The experiments were designed to

compare the convergence rates of the algorithms across tasks.

Tasks

The 6 learning tasks are summarized in Table 1. There are 3 each of 2 types of

tasks, called binary-reinforcement tasks and continuous-reinforcement tasks. In binary-

reinforcement tasks each interaction of the learning system with the environment has one

of two outcomes. The goal of the learning system is to maximize the number of interactions
oil

that end in one outcome, called success, and minimize the number that end in the other
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outcome, called failure. The learning system is made aware of the outcome of its action

y[t] taken at time t by the reinforcement r[t + 1] it receives at time t + 1. If the outcome

is success, rit + 11 has the value +1, and if the outcome is failure, rjt + 1] has the value
-1.

Table 1

Summary of Nonassociative Learning Tasks

Task Reinforcement r range r mean Relevant

Number Type Action 1 Action 0 Algorithms

1 Binary {1, -1} .9 .8 1-9

2 Binary {1,-1} .2 .1 1-9

3 Binary {1, -1} .55 .45 1-9

4 Continuous .9 .8 4-10

5 Continuous at -. 8 -. 9 4-9

6 Continuous a .05 -. 05 4-9

In continuous-reinforcement tasks the outcome of each interaction of the learning sys-

tem with the environment is a continuous-valued reinforcement. For example, the rein-

forcement tit + 11 corresponding to the action y[t] might take on values in the real interval

[-1, 1]. In continuous-reinforcement tasks the goal of the learning system is to maximize

the expected value of this reinforcement.

All 6 tasks are binary-action tasks. The learning system chooses one of two actions,

denoted y[t] = 0 and [t] = 1.

For binary-reinforcement tasks, the environment is fully characterized by two condi-

tional probabilities. One is the probability that the reinforcement rit + 1] is -1 given that
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~, the preceding action y~tJ was 0, and the other is the probability that the reinforcement

r[t + 11 is +1 given that y[t] = 1 . The success probabilities conditional on each action

for the 3 binary-reinforcement tasks we studied are given in Columns 4 and 5 of the first

three rows of Table 1.

For simplicity the tasks were constructed such that Action 1 is the better action on all

tasks. On Tasks 1-3 this was achieved by selecting a higher success probability conditional

* ~-:on Action 1 than conditional on Action 0. These tasks include one on which both success
probabilities are high (Task 1), one on which both success probabilities are low (Task 2),
and one on which one of the success probabilities is greater than I and the other is less2

than 1 (Task 3).

One might expect a task such as Task 1 to present a special problem for algorithms

because even the action with the lower probability of producing success is followed by suc-

cess almost all (80%) of the time. On the other hand, a task such as Task 2 is problematic

because the action with the higher probability of producing success is followed by failure

almost all (80%) of the time. By contrast, a task such as Task 3 should be the easiest for

algorithms to solve because the correct action is successful more than half the time and

the incorrect action is punished more than half the time. Thus, these three tasks cover

the major classes of non-trivial binary-reinforcement /binary- action tasks.

Columns 4 and 5 of the last three rows of Table 1 list the expected value of the

reinforcement for each action on the three continuous-reinforcement tasks. For each of

these tasks the reinforcement is selected according to a uniform distribution centered at

the mean indicated in Table 1 and extending .1 to either side. For example, if the learning

system selects Action 1 at time t on Task 4, then the reinforcement at time t + 1 is selected

according to a uniform distibution over the interval from 0.8 to 1.0.

Tasks 4-6 were also constructed so that Action 1 is the preferable action on all tasks.

These three continuous- reinforcement tasks were selected to cover roughly the same space

of relative difficulties as the binary-reinforcement tasks. One task was constructed so that

the expected reinforcement would be positive for both actions (Task 4), one so that the

expected reinforcement would be negative for both actions (Task 5), and one so tbat the
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expected reinforcement would be positive for one action and negative for the other (Task

6).

In addition, we wanted at least one task (Task 4) on which the reinforcement was

limited to the real interval 10, 11, because this is a condition required for the applicability

of some algorithms. We selected a fairly narrow range for the uniform distribution used

to select the reinforcement and selected the means of the distribution fairly close together

because we felt that this would amplify the ways the binary-reinforcement and continuous-

reinforcement tasks might differ from one another.

Algorithms

The 10 learning algorithms are summarized in Table 2. Each algorithm selects its

actions probabalistically; r[t] denotes the probability with which an algorithm chooses

action Y[t] = 1. Not all algorithms were applied to all tasks. The tasks to which each

algorithm was applied is indicated in the last column of Table 2.

Algorithms 1-3 are well-known learning automata algorithms. They are, respectively,

linear reward-inaction (LRI), linear penalty-inaction (LpI), and linear reward-penalty

(LRp ). These algorithms apply different update equations for success and failure and are

only applicable to the binary-reinforcement Tasks 1-3.

Algorithm 10 is also a learning automaton algorithm (Mason, 1973). It was designed

for tasks in which the environment returns a real-valued reinforcement in the real interval

[0, 1]. These tasks are called S-model environments in the learning automata literature

(Narendra and Thatachar, 1974). Algorithm 10 was applied only to Task 4, because this

was the only task in which the reinforcement was always between 0 and 1.

Whereas Algorithms 1-3 and 10 directly update their probability ir of choosing Action

I, Algorithms 4-9 operate by updating a modifiable parameter w that determines this

probability according to the unit normal distribution function 0Z(.) having mean w and

standard deviation a:
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Table 2

Summary of the Nonassociative Learning Algorithms.

Number Update Rule Relevant Tasks

.,,-'~t] - rll), if r[I + 11 = I

I i 1=xt o, if ri + 1= - 1-3

3., i- + O = rill ), if rt + 11 = -1 1-3

r = a(1 - yj - ill), if it + 11J=I

4 w[t + 11 = will + ar[it + l1(yil - 1/2) 1-6

5 wit + 11 will + aria + 1l(iltl - sit]) 1-6

6 wit + I1 = wit] + rx(rIl + 11 - ritl)(Vill - 1/2) 3,4

7 wi[t + 11 = will + a(rlt + 11 - ritll)(ultl - rll) 3,4

8 wit + 11 = wil] + a(ria + 11 - p1,1l)(Vitl - 1/2) 1-6

9 wfit + 1J = witl + a(rit + 11 - pil)(yvi - zt]) 1-6

-'10 sit + 11 = rj[l + n41 + ll(vitl - xlt]) 4

Where:

wlo=0 v[Ol=0 yulE (1,0) a>0 o lo=1/2

rill is the probability that yi'l = I

%%,., For Algorithms 4-9:

itil = (will/al

where a = 0.3 and 0(.) is the unit normal distribution function.

For Algorithms 8 and 9:

pit + 11 = pit] + #(rlt + 11 - pilt])

where plol= rill and i = 0.2
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Wit] =D(w¢t/o), (1)

where a = 0.3. Because there is no explicit mathematical form for the unit normal

distribution function, P was approximated by table lookup and linear interpolation.

Computationally, Algorithms 4-9 determine their action y[t] according to the sign

of the sum of wit] and a random variable n[t] selected according to a mean 0 normal

distribution (with standard deviation or = 0.3). If the sum is greater than 0, the action

y[t] = 1 is chosen, otherwise the action y[t] = 0 is chosen:

1, if w[t] + n[t] > 0;

0, otherwise.

This manner of selecting actions yields the action probability as a function of w given by

(1).

According to (1), any value of witi determines a legitimate value for irlt), i.e., one

that does not exceed the range of allowable probabilities from 0 to 1. Algorithms that

update wit], such as Algorithms 4-9, are therefore relatively easily applied to a wide

range of different tasks. Unlike the algorithms that update ir[t] directly, one need never

worry about ir[t] exceeding the allowed range of a probability. Algorithms 4-9 are the

only algorithms applied to all 6 tasks.

Algorithms 4-9 include both reinforcement-comparison algorithms (Algorithms 6-9)

and non-reinforcement-comparison aglorithms (Algorithms 4-5) of several different types.

Their differences and similarities will be brought out in detail when the results of the

simulation experiments are discussed.

Each algorithm is parameterized by a single number a, called the learning constant,

that determines the learning rate of the algorithm. For small positive values of a, learning
is slow. For larger values of a, learning is faster, but if the value of a is too large, an

algorithm can learn too quickly and converge to the wrong action.
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Results

For each algorithm and each task to which it was applied, simulation experiments

were performed with 8 different values of a. These 8 values were the negative powers

"-'* of 2, 20 through 2 -7 i.e., a = I.,.5,.25,.125,.0625,.03125,.015625, and .0078125. For

each algorithm, task, and value of a, 200 simulation runs were made, each of 200 time

steps. The 200 runs differ from each other only in the choice of the initial seed for the

pseudorandom number generator.

At the end of each run the final probability with which the algorithm selected Action

1, ir[201], was determined. Sii :e for all tasks Action 1 is the better of the two actions,

this probability provides a measure of the performance of the algorithm. In most cases

performance of each algorithm is an inverted-U shaped function of a. Since many of

these algorithms are quite different and use a in different ways, it is not valid to compare

the performance of different algorithms at the same a values. These results are best

interpreted by comparing the performance level the algorithms attained with their own

best values for oe. Using this performance measure, Figure 19 compares all algorithns on

all tasks.

One can see that most algorithms on most tasks did not reach probabilities near unity

in 200 time steps. We chose run durations short enough so that the probabilities achieved

by the end of a run reflected the rate of learning. The data shown in Figure 19 say noth-

ing about the probabilities that might have been reached if the runs had been allowed to
continue. Although such asymptotic behavior is important in understanding the mathe-

matical structure of the algorithms, in practice learning rate is often more critical. Fast

algorithms that sometimes do not converge can be more useful than slower algorithms that

are asymptotically optimal.

O* Consider the lower graph of Figure 19. On Tasks 4-6, the performances of Algorithms

6-9 were virtually identical. On Tasks 1-3, Algorithm 9 was slightly better in each case,

but the general trends in performance as a varied were very similar, and the best perlor-

mances of these algorithms were not greatly different. Since these algorithms performed so

similarly, and since Algorithm 9 was the best of them in all cases, only data from Algorithm
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Figure 19

Summary of Algorithm Performance on all tasks of Section 3.

9 is plotted in the upper graphs of each figure for comparison with the other algorithms.

The performance plots in the upper graph of Figure 19 show much wider variation

than those in the lower graphs. On all tasks except Task 6, some algorithms showed

high performance whereas others showed very poor performance, and which algorithms

" "were which varied from task to task. Algorithm 4, for example, performed the best of

all algorithms on Tasks 3 and 6, but worst of all algorithms on Tasks 4 and 5, as well as

performing very poorly on Task 2. Algorithm 1, on the other hand, performed the best of

T-7 all algorithms on Task 2 and performed only reasonably well on Tasks 1 and 3, the only
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other tasks to which it was applied.

Of those algorithms whose performances are plotted in the upper graphs of Figure 19,

-~ ~ the only one that performed well on all tasks was Algorithm 9. Algorithm 9 performed

the best of all algorithms on Tasks 1, 4, and 5, tied for best on Task 6, and was a close

second on the remaining Tasks 2 and 3. Almost all the performance differences between

algorithms shown in this figure are highly statistically significant. For example, even the

difference between the best performances of Algorithms 9 and 5 on Task 3, one of the

smallest of the differences mentioned above, is statistically significant at the P=0.01 level.

Discussion

Algorithms 6-9: Short-Term vs. Long-Term Reinforcement Comparison-

Algorithms 6-9 are reinforcement-comparison algorithms. Algorithms 6 and 7 compare

reinforcement by computing the difference between the current reinforcement and the pre-

ceding reinforcement, rjt + 1] - rnil. Algorithms 8 and 9 are somewhat more complex.

Rather than comparing current reinforcement with the immediately preceding reinforce-

ment, they compare it with a long-term measure of prior reinforcement. These algorithms

compare current reinforcement with a real-valued variable, which we will call the expected

level of reinforcement, whose value at time t is denoted p~tJ. That is, they update w

according to r~t + 11 - pit], where p[t] is an exponentially weighted average, or trace, of

-. .. the preceding reinforcement values r~tJ , rit - 1)J, njt - 21, ... , with the greater weight going

to the more recent reinforcement values. Algorithms 8 and 9 use the following difference

equation to produce this trace:

p~t + 11 =pit] + j3(rt + 11 - p[t]), (3)

where p[0] = [tj and 0 <p P< 1. ~6 was 0.2 for all simulation runs reported here. Since

pit] is incremented fractionally according to its difference from rnt + 11], p~t] tracks the
lvlof r~t + 11 . If r remains constant, p eventually reaches that constant value. The

parameter 63 determines how quickly p reaches a fixed level of r or how quickly it tracks

a changing level of r. A fairly low value for fl, such as the value 0.2 used in Algorithms
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8 and 9, implies that pit] tracks r[t + 1] relatively slowly.

The- lower part of Figure 19 shows that algorithms that compare current reinforcement

with th. longer term measure of preceding reinforcement (Algorithms 8 and 9) performed

significantly better than the other two algorithms (Algorithms 6 and 7) on Tasks 1-3, and

identically on Tasks 4-6

Algorithms 4-9 - For the moment let us consider Algorithms 4-9 in pairs, 4 with 5, 6

with 7, and 8 with 9. The algorithms of each pair are identical except for the factors of

their update equations involving which action was taken. The lower numbered algorithms

of each pair use yjt] - in this capacity whereas the higher numbered algorithms of each

pair use y4t] - it] . Both factors involve the action taken at time t, and the second factor

uses knowledge of the action probability.

The factor y[t] - 4is when Action I is chosen and - when Action 0 is chosen.

,, The absolute value of this factor is constant and its sign encodes which action was taken.

The factor y[t] - it] is somewhat more complex. On the earliest trials before w[t] has

changed very much from 0, this factor operates exactly as the factor y~t] - because wit]

is still near its initial value of . As wit) moves significantly away from 0, w[t] moves

toward either 0 or 1, and y[t] - wit] begins to behave differently from y[t] - 4. The

two factors always have the same sign, but their absolute values differ. In comparison to

the factor y(t1 - , ytl - ilti amplifies the changes in w[tI on those steps on which the

less-likely action is taken, and diminishes them on those steps on which the more-likely

action is taken. For example, if ir[t] is .9, then y[t] - wit] is .1 = 1 - .9 if the more-likely

action, Action 1, is chosen, and -. 9 = 0 - .9 if the less-likely action, Action 0, is chosen.

It is not clear from the results shown in Figure 19 which of the algorithms of each pair is

better. Algorithm 9, an algorithm using the factor y[t1 - it], performed somewhat better

than Algorithm 8 on Tasks 1-3, and essentially equivalently to Algorithm 8 on Tasks 4-6.

Algorithm 7, an algorithm using the factor yft] - r[t], was slightly better than Algorithm

6 on Task 2, worse on Task 1, and equivalent on Tasks 3-6.

The differences between the performances of Algorithms 4 and 5 were much larger and
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more varied than the differences between the performances of Algorithms 6 and 7 and

Algorithms 8 and 9. The performances of Algorithms 4 and 5 were nearly the same on

Tasks 4 and 6 (the difference on Task 4 was not statistically significant; the difference on

Task 6 was significant, but it probably would not have occurred if higher values of a had

been tried for Algorithm 5). On the remaining tasks, Algorithm 4 was significantly better
than Algorithm 5 on Tasks 1 and 3, and dramatically worse on Tasks 2 and 5.

The reason for the very poor performance of Algorithm 4 on Task 2 is that Task 2

was the binary-reinforcement task in which the outcome was failure on almost all trials

irrespective of the action chosen, although failure was slightly less likely (.8 versus .9) when

Action 1 was chosen. Algorithm 4 uses the following update rule:

w[t + 1] =w[t] + a r~t + 11(y~tl - 1/2), (4)

where r[t + 1] E {-1, 1) on Task 2. This algorithm moved w in the correct direction

(positive) on Task 2, but as it started to favor Action 1, it began to slow down and

ultimately stop. The problem was that as the algorithm started to choose Action 1 more

often than Action 0, most failures started to occur on Action 1 trials simply because

Action I trials were occurring more frequently, and most trials ended in failure in any

case. The equilibrium probability of Algorithm 4 choosing Action 1 - that at which the

expected value of wjt + 11 given w~tJ is the same as w[t] - on Task 2 can be shown

* mathematically to be 4/7 ft .57 (see Sutton, forthcoming, for details). Figure 19 shows

that the final probability of Algorithm 4 choosing Action 1 on Task 2 was near this value

(it was in fact near this value for all values of a that were tried).

Algorithm 5 differs from Algorithm 4 only in the replacement of the factor y(t] - by

y[tJ - r[t] , and this is enough to prevent the poor performance exhibited by Algorithmn

4. As Algorithm 5 started to choose Action 1 more often, it experienced more trials on

which it chose Action 1 (whose outcome was failure), but because of the factor y[t] - rt,

the effect on the probability of choosing Action 1 of each of these failures was diminished.

Unlike Algorithm 4, Algorithm 5 continued to move the probability of choosing Action 1

toward 1.
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In conclusion, these results show that algorithms with the factor y~t] - ir[tI sometimes

show improved and sometimes degraded performance over the cc -responding algorithms

1, with the factor y~t] - '~. Where the factor y4t] - x~ti improves performance, it sometimes

improves it dramatically, and where it degrades performance, it degrades it relatively little.

Finally, for the best performing algorithms (8 and 9), the factor y4tJ - irntl resulted in a

small consistent improvement across tasks.

Algorithms 1-10: Reinforcement-Comparison Mechanisms -The algorithms with

reinforcement-comparison mechanisms (Algorithms 6-9) performed much better accross

tasks than the comparable algorithms without reinforcement-comparison mechanisms (Al-

* gorithms 4 and 5). Although Algorithm 4 performed best of all algorithms by small margins

on Tasks 3 and 6, it performed far worse than the reinforcement-comparison algorithms

on Tasks 2, 4, and 5. On Tasks 4 and 5 all reinforcement-comparison algorithms showed

complete and correct learning, and all other applicable algorithms showed only a very low

level of learning.

Algorithms 1, 2, 3, and 10 are learning automata algorithms commonly discussed in

the literature. Although these algorithms are not particularly noted for their speed of

learning, they provide useful reference points against which to assess the performance of

the other algorithms. Algorithms 1-3 could be applied only to the binary-reinforcement

- tasks (1-3). Algorithms 2 and 3 were the poorest performers on these tasks, and Algorithm

1, on balance, performed significantly worse than several of the other algorithms, including

particularly the best reinforcement-comparison algorithm, Algorithm 9. Algorithm 10 was

the only learning automaton algorithm applied to Task 4. However, it did little better than

the other algorithms in challenging the greatly superior performance of the reinforcement-

4 comparison algorithms on this continuous-reinforcement task.

Conclusion

These results do not prove that reinforcement-comparison mechanisms are necessary

'.> to improve learning rate. Strictly speaking, the conclusion that reinforcement-comparison

mechanisms greatly improve rates of learning applies only to this particular set of algo-
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rithins and tasks. However, these results suggest that remembering past reinforcement lev-

els for subsequent comparison may be an essential feature of robust and high-performance

learning algorithms for discrete-action nonassociative reinforcement-learning tasks.

The simulation experiments reported here need to be extended and verified in several

ways. First, a great many more algorithms should be tried, including other algorithms

from the learning automata literature, algorithms from the 2-armed bandit literature, and

reinforcement-comparison algorithms other than those tried here. For example, the al-

gorithm that forms separate estimates of the expected reinforcement for each action and

then compares them to determine its action probability is a reinforcement-comparison

algorithm, though different from those tested here, and would make an interesting addi-

tion to this study. Second, mathematical analysis of the asymptotic properties of various

reinforcement-comparison algorithms needs to be developed in order to more fully under-

stand them. Some preliminary analyses can be found in Sutton (forthcoming).

% 4 The experiments reported here should also be extended to other tasks. Other variants
of the binary-action with binary or continuous-reinforcement tasks that were studied here

should be tried, but it is probably more important to experiment with other classes of

tasks. Tasks with more than 2 actions and/or more than 2 discrete reinforcement levels

(called Q-model environments in the LAT literature) come to mind.
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Section 4

EXPERIMENTS WITH ASSOCIATIVE-LEARNING PROBLEMS

- Introduction

Associative-learning problems are problems in which a mapping from input to output

must be formed by the learning system. Stimuli and actions must be associated in such

a way that the occurrence of a stimulus evokes the most suitable or appropriate action.

Learning problems in pattern classification, for example, are associative because associa-

tions are learned between patterns (stimuli) and classifications (actions). Reinforcement-

only problems are not associative-learning problems because the learning system need only

V.. discover the best action; it need not associate it with any stimulus. However, pattern-

classification learning problems, while they are associative-learning problems, are not typ-

ically reinforcement-learning problems because they do not require the learning system
to discover the best classifications - these are provided by a "teacher" during a training

sequence.

Independent-Step Associative Learning

An independent-step learning problem is one in which the interaction between the

learning system and its environment can be broken up into single steps, each of which is

independent of the other. For associative reinforcement learning, each step involves the

presentation of one stimulus vector to the learning system, its selection of one action, and

finally the delivery of a reinforcement feedback signal by the environment. Such steps

are said to be independent if the stimulus, action, and reinforcement of one step do not
influence the stimulus, action, and reinforcement of any other step. In particular, the

action selected on one step may influence the reinforcement on that step but not that of

any other step.

Formally, the restriction of independent-step learning problems means that the envi-

ronment does not change state. For these problems we can characterize the environment

by a sequence of stimuli, z[l], x[2],., and a map r such that
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r(ntt, yIt]) '-4 rjt + 1],

where X is the stimulus space, Y is the action space, and the reinforcement space 3?

is the set of real numbers. As usual, r may be stochastic. A single step involves the

stimulus at time t, zltI, the action at time t, yjt] , and the reinforcement at time t + I ,

r~t + 11]. Note that the reinforcement is denoted as occurring one time step later than the

- V stimulus and the action. We have chosen this convention because it is consistent with later

descriptions of learning problems that cannot be broken up into independent steps.

In this section, we compare the performance of I11 associative-learning algorithms on

- 12 independent-step associative reinforcement learning tasks. The algorithms are adapta-

tions of those studied in Section 3. The experiments were designed to compare the learning

rates of these algorithms as functions of characteristics of the tasks. Among other things,

these experiments allowed us to test whether the advantage of reinforcement-comparison

algorithms in reinforcement-only tasks carry over to associative-learning tasks. Before dis-

cussing these experiments, we first review some different approaches to associative learning.

V Approaches to Associative Learning

Over the years, in various fields, there have been at least three approaches to the

problem of associating actions with stimuli: the independent-associations approach. the

stimulus-sampling-theoryi approach, and the linear-mapping approach. We discuss each of

' .~ these approaches to associative learning and the relationships between them.

An important issue in evaluating a particular approach to associative learning is how

it handles stimulus similarity, since this determines when generalization between stimuli

occurs and when discrimination is; possible. Generalization between stimuli occurs when

training to one stimulus transfers and influences behavior (action selections) to another

stimulus. When the transfer is positive, i.e., when the action learned in the presence of

the first stimulus becomes more likely to occur in the presence of the second stimulus as a

result of the training, then the two stimuli are said to be similar. Stimulus discrimination

.1 refers to the ability of a learning system to perform two different actions in response to two
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different stimuli. In stimulus discrimination, one is usually concerned with discriminating

beteen two stimuli that are similar, in which case generalization between them may make

their discrimination difficult. The ability to completely discriminate between two stimuli

implies the ability to overcome any generalization between them and behave differently in

response to them with 100% reliability.

The Independent-Associations Approach -- One approach to associative learning

is to make a separate association to an action for each stimulus pre3ented to the learning

system. Since each association is distinct and separate from any other, a separate memory

variable (or variables) is required for each stimulus. This requirement restricts the use-

fulness of this approach to problems with small numbers of distinguishable stimuli. The

independent-associations approach has been used in reinforcement-learning control the-

ory (Mendel and Mclaren, 1970), in mathematical learning theory (Bush and Mostelier,

1955), and occasionally used in learning automata theory (Lakshmivarahan, 1981; Witten,

.*.-" 1977) and artificial intelligence (Michie and Chambers, 1968a, b; see Section 6). It is

also the basis of "table-lookup" approaches to storing mappings (Raibert, 1978). Because

all stimuli are treated separately, no stimuli are similar and no generalization can occur.

Stimulus discrimination is trivial because it is never necessary to discriminate between

similar stimuli.

In short, the independent-associations approach ignores the problcms of stimulus sim-

ilarity, generalization, and discrimination. By ignoring these issues, the independent-

associations approach gives up the opportunities they provide. Assuming similar stimuli

should elicit similar actions, transfer of training due to generalization can greatly speed

up learning. In "real life" learning problems it may be rare for any detailed stimulus to

occur twice in the lifetime of the learning system. In such cases, generalization between

stimuli is essential.

On the other hand, one advantage of the independent-associations approach is thaL

' it permits one to apply algorithms known to work in nonassociative learning problems

directly to associative problems. To do this, one allots a separate instance of a nonas-

. sociative learning algorithm, such as one of those studied in Section 3, for each stimulus

71
-'"-



°- Twill

that will ever be presented to the learning system. Whenever a stimulus occurs, the cor-

responding algorithm takes one step. This reduces the associative-learning problem to a

set of independent nonassociative learning problems. Using the independent-associations

approach and this technique, any algorithm known to work for nonassociative learning

problems can be applied with confidence to associative-learning problems. For this reason

the independent-associations approach has remained of considerable theoretical interest

despite its requirement for small numbers of distinct stimuli and its lack of generalization

capabilities.

The Stimulus-Sampling-Theory Approach - One approach to associative learning

that does include stimulus similarity and generalization is stimulus sampling theory (Estes,

1950). In stimulus sampling theory (SST), stimuli are represented as subsets of a large

number of independently variable stimulus components. (In SST these are usually called

stimulus elements, but these are referenced here as stimulus components.) Each stimu-

lus component is associated in an all-or-none fashion with a particular action. When a

stimulus is presented, a random sample is drawn from a corresponding subset of stimulus

components. The proportion of stimulus components in a stimulus' subset associated with

an action determines the probability of that action's being chosen in response to the stim-an.

ulus. As a consequence of a conditioning rule, the stimulus components that are sampled

may have their associations with the action changed.

In SST two stimuli are said to be similar to the extent that they have common stimulus

components in their respective subsets. Hence, generalization in SST works as follows.

Training with one stimulus will result in a high proportion of the stimulus components

in its subset becoming associated with a particular action. If a second similar stimulus

is then tested, the probability of its eliciting this same action will be higher because the
components it has in common with the first stimulus will have become conditioned to the

action. The strength of generalization is proportional to the size of the intersection and the

strength with which the first stimulus was conditioned. When all the subsets of stimulus

S.," components of all stimuli are disjoint, then no generalization can occur. in this special

k or' case, the SST approach becomes an independent-associations approach.
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Although SST's approach to similarity works out fairly well for generalization (La

Berge, 1961; Carterette, 1961; Atkinson and Estes, 1963), it has difficulty with discrim-

ination learning. With the SST approach, a learning system can never perform different

actions to two similar stimuli with 100% reliability. Several directions have been taken in

SST to handle this problem. One is based on the idea of somehow eliminating the effective-

-?ness of stimulus components in the intersection of stimulus subsets when discrimination

between the corresponding stimuli becomes necessary. Work along this line is usually based

on the idea of selective attention (Restle, 1955; Zeaman and House, 1963; Lovejoy, 1968;

Sutherland and Mackintosh, 1971). The other major direction taken to handle stimulus

discrimination within SST is based on the idea that configurations of stimulus components

may be perceived as whole patterns or "gestalts" (Atkinson and Estes, 1963; Friedman,

Trabasso and Mosberg, 1967). Both of these remedies involve bringing in additional mech-

anisms to handle the problem of discrimination learning.

: .. The Linear-Mapping Approach - A third approach to stimulus similarity has been

widely used in pattern classification, control theory, neural network research, and animal

learning theory. In the linear-mapping approach, stimuli are represented as vectors, where

each component of the vector indicates the presence or absence (or extent) of a stimulus

component. A linear mapping is formed from the stimulus vectors to a quantity that

determines, usually via a threshold, the action to be taken. As a consequence, similarity

.. and generalization between stimulus vectors is determined by the degree of their linear

dependence, i.e., by their inner product.

When all stimulus vectors are mutually orthogonal, no stimuli are similar, and no
generalization can occur. In this case, the linear-mapping approach reduces to a rather

roundabout form of the independent-associations approach. The linear-mapping approach

is the approach we studied in the research reported here. The tasks described in this

section are concerned exclusively with binary-action problems in which the action y[t] is

either I or 0. Actions are selected as follows:

*9.
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= if ~tj + ajtj > 0;(){0, otherwise.

- where

a It] Xi t] Wi t], (6)

:it] (XI It), X2 t], . I~t)) is the stimulus vector presented at time t ,tgit[] (WINt, W2It],
* ~ ~ W .. wIt]) is a weight vector at time t , n is the total number of stimulus components,

and alt] is a normally distributed random variable of mean 0 and standard deviation am.

* The linear-mapping approach is better at discrimination than is SST. In the SST

approach, perfect discrimination between two stimuli is possible only if the stimuli are

* totally dissimilar. In the linear-mapping approach, two vectors can be very similar, with

a great deal of generalization occurring between them, but complete discrimination can

still be possible. Roughly, two stimulus vectors are similar in the linear-mapping approach

according to the angle between them. As long as the angle between two vectors is not

* zero, it is possible to fit a hyperplane between them and therefore to discriminate between

* them. Therefore, very similar vectors can be mapped to completely different actions with

as high a degree of reliability as desired.

Although the linear-mapping approach is in some respects a better approach to asso-

ciative learning than either SST or the independent- associations approach, it obviously has

limitations. Considered by itself, for example, the linear-mapping approach does not ad-

dress the important problem of re-defining the components of stimulus vectors (see Section

* 2). However, for the moment we are satisfied with the linear-mapping approach despite

this limitation because the problem of forming even linear maps remains largely unstudied

* for the problems in which we are interested, i.e., those involving associative learning under

reinforcement feedback. One purpose of the experiments presented in this section is to

show that the few algorithms that have been proposed for associative reinforcement learn-

ing using the linear-mapping approach fall when required to form linear maps in interaction

with certain types of environments.
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Tasks

In the experiments described in this section, 11 learning algorithms were applied to

12 learning tasks. As in Section 3, for each task and algorithm simulation runs were

made for many values of a learning constant parameter a. For Tasks 1-10, the a values

used were the powers of two from 21 to 2 - . For Tasks 11 and 12, the a values used

were the powers of two from 21 to 2- 15 . For each task, algorithm, and a value, 100

simulation runs were made, each differing only in the initial seed of the pseudo-random

number generator.

In this subsection we provide a complete description of the 12 tasks. Discussion of the

rationale for using these particular tasks is deferred to the "Discussion" subsection. Table

3 summarizes the 12 tasks. Each facet of this table is fully discussed below.

As in Section 3, all tasks are binary-action tasks (y[t] = I or y4t] = 0). On each time

step t the environment sends to the learning system one of two stimulus patterns, which

we represent as vectors and denote £' and x- . For Tasks 1-8,

and X (7)

For Tasks 9-12,

(0) (1.50 _.. =and _= 1S 8

In both cases the two stimuli are clearly distinguishable via the first and third components,

but are also similar via the second component.

One difference between the stimuli of Tasks 1-8 and those of Tasks 9-12 is their in-

tensity. On Tasks 1-8 the two stimuli are equally intense, whereas on Tasks 9-12 the first

- stimulus is half as intense as the stimuli on the other tasks, and the second stimulus is
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Table 3

Associative Learning Tasks.

Expected Value of Payoff Stimulus Stimulus
Task S Stimulus FreuencIntnsity

Number y = I y = 0 y1 I V=O 1 r i' Steps Description

1 .1(55) -. 1(.45) -. 1(.45) .1(.55) .5 .5 1 1 1500
Symmetrical

2 .1 -. 1 -. 1 .1 .5 .5 1 1 200

3 -. 6(.2) -. 8(.1) .6(.8) .8(.9) .5 .5 1 1 1500 Payoff
Level

4 -. 6 -. 8 .6 .8 .5 .5 1 1 200 Asymmetry

5 .05(.525) -. 05(.475) -. 15(.425) .15(.575) .5 .5 1 1 1500 Payoff
Spread

6 .05 -.05 -.15 .15 .5 .5 1 1 200 Asymmetry

7 .1(.55) -. 1(.45) -. 1(.45) .1(.55) .25 .75 1 1 1500 Stimulus
Frequency

8 .1 -. 1 -. 1 .1 .25 .75 1 1 200 Asymmetry

9 .l(.55) -. 1(.45) -. l(.45) .1(.55) .5 .5 .5 1.5 1500 Stimulus
Intensity

10 .1 -. 1 -. 1 .1 .5 .5 .5 1.5 200 Asymmetry

11 -. 4(.3) -. 8(.1) .3(.65) .9(.95) .25 .75 .5 1.5 3000 Combined
Asymmetries

12 -. 65 -. 75 .55 .85 .25 .75 .5 1.5 2000

one-and-a-half times as intense. This difference is indicated in Table 3 in the columns

labeled "Stimulus Intensity."

On all tasks the stimulus presented is selected probabilistically. On Tasks 1-6 and

9-10, the two stimuli are presented with equal frequency, i.e., each with a probability of

0-- -. 5. On any given time step of Tasks 7-8 and 11-12, V is presented with a probability

of .75 and ' with a probability of .25. These probabilities are listed in Table 3 in the

columns labeled "Stimulus Frequency."

Half of the tasks are binary-reinforcement tasks and half are continuous-reinforcement
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tasks. In the binary-reinforcement tasks, the reinforcement r received from the environ-

ment is either a +1 (success) or a -1 (failure), whereas in the continuous-reinforcement

tasks the reinforcement can take on any real value. The odd-numbered tasks are binary-

reinforcement tasks and the even-numbered tasks are continuous-reinforcement tasks.

In all tasks, the reinforcement r[t + 1] is a stochastic function of the preceding action

y~t] and stimulus ut]. Since there are two possible stimuli and two possible actions, there

are four possible combinations of stimulus and action. Cohimns 3-6 of Table 3 list the

expected value of the reinforcement for each task for each of these 4 combinations.

For the continuous-reinforcement tasks, the reinforcement is computed from the ex-

pected values in Table 3 as

r[t + 11 =t + aft].

where I denotes the expected value of the reinforcement corresponding to stimulus i

and action y, and where a[t] is a normally distributed random variable of mean 0 and

standard deviation er . For all tasks except Task 12, or = .1. For Task 12, or = .025.

K- For the binary-reinforcement tasks, reinforcement is computed from the probabilities

given in parentheses in Columns 3-6 of Table 3. Letting P-' denote P{r(i, y) = 1}, i.e.,

the probability of a successful outcome given stimulus : and action y, the expected values

given in Table 3 are computed as follows:

Finally, the last column of Table 3 provides a verbal description of the type of problem

each pair of tasks presents to a learning algorithm. These descriptions are elaborated later
r in this section.

iosection.
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-.- Algorithms

All 11 algorithms used in these experiments use the linear mapping approach to asso-

ciative learning. That is, they all update a weight vector t9[t] = (w1 [t], w2[t],..., w[t]) and

select their actions according to (5) and (6) with ay = .3 for all algorithms. The update

rules of some algorithms use r[t] ,the probability that y[tj = 1 given it]. Determining

y[t] according to (5) implies that

itl =C(stlly),

* .where t is the unit normal distribution function (an S-shaped function). All normally

distributed random numbers used in these experiments were approximated by linear inter-

polation from tables and uniformly distributed random numbers.

The learning algorithms studied in this section's experiments differ only in the rules

they use to update the weight vector w7[t]. The update rules and other relevant equations

for the I 1 algorithms used in these experiments are given in Table 4. The update rules are

all simple extensions to the case of associative learning of the update rules of the algorithms

discussed in Section 3.

Algorithms 4-7 are the most straightforward extensions of the nonassociative learning

algorithms of Section 3 to associative learning. The update rules of Algorithms 4-7 of this

section are very similar to those of Algorithms 4-7 of Section 3 (compare Tables 2 and

4). The primary difference (besides the fact that the new rules update all the components

w,[t] of a vector tV[t] whereas the rules of Section 3 update a scalar wit]) is that the new

update rules each have one more factor than the corresponding update rules of Section 3.

In all cases the additional factor determining the modification of wi[t] is the corresponding
stimulus vector component zi[t]

The update rule of each algorithm therefore includes a product of two factors, one

depending on the action selected, either y~t] - y[t] - w[t] , I - y[t] - or I - yIt] - ir[t,

and one depending on the presence or absence of a stimulus component, x,[t] . Using

Klopf's (1972) terminology, we call this product, denoted ei[t], the eligibility of w, at
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Table 4

Associative Learning Algorithms.

Number Update Rule Relevant Tasks

"-x[Lj)xIt, if rlt+ll=,I wit + 11 = Willi + ,.3,5,7,9,11t'o, if r[t+ll=-1 1

ol] , if r[t+1]=-

""::"':3 ,,,I + ' = ,,[] +~f (vlt) - .ltl)z, It), if rlt+l]=l"3+-'"-",:: (+ { t]- rs)i) , if r[t++w=, 1,3,5,7,0,11

a( j ltl-1)z Il, if rlt+11=1

4 w 1It + 11 = w[It] + art + 11(y[tl - 1/2),[li 1-12

5 w,,It + 11 = w, lt] + art + 1](ul] - w[tl)z, ll 1-12

6 w t,[ + i] = w, It] + a(rt + 11 - rill)(u[tl - ,/2),ilt] 3,4

- 7 wit + 1] = wjII + cr(rit + 11 - rill)(ult - u[t,)litI 3,4

8 ,it + 11 = w[lt] + a(rit + 11 - plil)(ultl - 1/2):,[t 1-12

9 wi It + 11 = --- itl + a(r[t + 11 - p[tl)(ytl - [ltl)xi, it 1-12

{ (ylt] - 1/2)z[lt, if rlt+l]=l10 ,it + 11 = Wll + if 1,3,5,7,9,11
+0, if rt+11=-1

-,I.t(1- ~ -1/), U if r[t+1J=1l
-11-.. wilt + 1] = w.ilt] + a(t -.l] - /2)zilt], if rlt+ll=l 1,3,5,,,11

Where:

wl0l=0 v,[O]=0 ulle(1,0) a>0

'j.' e r[il is the probability that y4t] = 1, given 1t]

u-[. = 1, if sli +a[lI > 0;
0, otherwise.

where a[1] is a normally distributed random variable of mean 0 and standard deviation .3, and

pill= v It ]z, I] p0l rll
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time t. It indicates the extent to which w, is eligible for undergoing modification due to

the reinforcement received at that time.

Like Algorithms 4-7, Algorithms 1-3 of this section also correspond to the like-

numbered algorithms of Section 3 These algorithms, however, are somewhat less similar to

their Section 3 counterparts then are Algorithms 4-7. Algorithms 1-3 of this section deter-

mine changes in wit] whereas the corresponding Section 3 algorithms directly determine

changes in ir[t].

Algorithms 10 and 11 do not correspond to any algorithms discussed in Section 3. In

this and the previous section we compare pairs of algorithms that differ only in that one

uses y/t] - 1 and the other uses .tt - 1t] in their update rules. Given our modification of
2

Algorithms 1-3, all of which use y[tl - ir[t], it is possible also to include the corresponding

algorithms that use y[t] - . Algorithms 10 and 11 correspond to Algorithms 1 and 2 in
this way. There was no need to add an algorithm for the y[t] - case corresponding to

Algorithm 3 because Algorithm 4 already fills this role.

Reinforcement Comparison in Associative Learning - Algorithms 6 and 7 are

simple reinforcement-comparison algorithms very similar to Algorithms 6 and 7 of Section

3. These algorithms compare the current reinforcement with the immediately preceding

reinforcement. Although this technique worked well on the problems of Section 3, there are

reasons to doubt their success on associative learning problems. It is much more difficult

for an algorithm to compare current with past reinforcement levels properly in associative

learning problems than it is in nonassociatite learning problems. The problem is that for

some tasks it may be possible to obtain high reinforcement levels in the presence of one

stimulus but only low reinforcement levels in the presence of another. Tasks 3 and 4, for

example, are of this sort. On such tasks, if different stimuli occur on two successive steps,

then the change in reinforcement may be primarily due to the change in stimulus rather

than to the action selected by the learning algorithm. In such cases the use of rtt + 11- rt]

(as in Algorithms 6 and 7) is inappropriate. To illustrate this problem while minimizing

the complexity of the experiments, Algorithms 6 and 7 were applied only to Tasks 3 and

9,
4.
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Whereas comparing the current reinforcement level with past reinforcement levels is

a very simple process in nonassociative learning, in associative learning we see that it i3

much less straightforward. To obtain the maximum advantage from the reinforcement-

comparison technique, the reinforcement received on the current step must be compared..

with the reinforcement received on previous steps on which the same stimulus occurred

as occurred on the current step. How are the past reinforcement levels for each different

stimulus to be recorded and kept separate from each other? The problem is particularly

difficult if one assumes, as is done here, that the stimuli are not individually recognizable

and separable, as they are in the independent-associations approach.

One way of solving this problem is to view the sequence of stimuli, and the rein-

forcement levels obtained by acting in response to them, as a training sequence for a

supervised learning pattern classification algorithm. We used a version of the Widrow-

Hoff, or Adaline, algorithm (Widrow and Hoff, 1960): A modifiable parameter vector

-.. vit] = (vt [t], v2 [t],..., v.[t]) is required in addition to ti[t]. Whereas ut[t] maps a stimu-

lus to an action, vit] maps a stimulus to an average of the reinforcement levels obtained

when the stimulus (or similar stimuli) occurred in the past. We call V the reinforcement-

association vector (whereas we call W- the action-association vector), and we call this aver-

age of past reinforcement levels the predicted reinforcement and denote it as p[t] E 31. It is

computed from the current stimulus i[t] in the usual way for a linear-mapping approach

to association:

p[t = Zvt[tJzIt], Vt> o.

We update vjtj so that p[t] becomes an average of the appropriate past reinforce-

ment levels. This rule changes vt] according to the discrepancy between the predicted

reinforcement p[t] and the corresponding actual reinforcement r[t + 1]:

v,[t + 11 = v,[t + (r[t + 1] - p[t])z,[t], (9)

for t =0,1,..., and i 1,...,n, where v,[0] = 0, p[0] = r[l], and 83 = .1 for all
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simulations discussed in this section. The discrepancy between expected reinforcement

pit] and the actual reinforcement r[t + 1], in addition to being the error in the predicted

reinforcement, is also the quantity needed as a comparison of the current reinforcement

level with past reinforcement levels associated with the current stimulus. Algorithms 8

and 9 use this discrepancy in this way. For example, Algorithm 8 updates its weight vector

Olt] as follows:

wit + 11 = w,[t] + a (r[t + 1] - p[t])(y[t] - l/2)z,[tj, (10)

for t = 0, 1,..., and i = 1,...nn. When the actual r, nforcement r[t + 1] is greater (less)

than the predicted reinforcement p[t], w, is changed so as to make the action selected more

(less) likely as a response to the stimulus. Note that if the same stimulus were presented

on every step, then the problem would no longer be an associative learning problem, and

this reinforcement-comparison technique would work like that used in Section 3. In fact,

if the single stimulus were a vector of a single component of value is 1, then (9) and (10)

reduce exactly to the equations specifying Algorithm 8 of Section 3.

Although a reinforcement-comparsion algorithm for associative learning is necessarily

more complex than those considered so far, such an algorithm could potentially perform

much better than non-reinforcement-comparison algorithms. The results reported in Sec-

tion 3 suggest that reinforcement-comparison algorithms learn much more rapidly than

non-reinforcement-comparison algorithms on nonassociative learning tasks. It is likely,

therefore, that reinforcement-comparison algorithms might have a similar advantage in

associative-learning tasks. The results of the experiments of this section bear out this

hypothesis.
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Results

For each task, algorithm, and value of a, 100 simulation runs were made, each differing

only in the initial seed for the random number generator. At the end of each run the final

parameter vector tg[101] was recorded. From this, the probability of the learning system

selecting Action 1 on the next step, had the run been continued, was computed as follows:

3

7- r= P{y[101] = 1i X[101] = V) = O(Zjw[101X/caY)

= p{y[101] = 11 [1o1] = X2 = O(ZWa[1JzX/ay),

where P{. j "} denotes a conditional probability. From these, the known stimulus presen-

tation frequencies, and the expected values of the reinforcement as a function of stimulus

'-- and action (listed in Table 3), one can compute the expected value of the reinforcement

on the next step, had the run continued:

E{r[1011} =p'i' 4 ' + p'(1 -
+22 ,.+ 2 2(1 -

where pt is the probability of stimulus :i' being presented, i = 1,2, and rt is the

expected value of the reinforcement given that stimulus i and action j h.ve occurred.

These probabilities and expected values of the reinforcement depend on the task as listed

in Table 3.

The expected value of the reinforcement on the next step after the end of the run is a

good measure of how well the learning algorithm has learned by the end of the run. If it

has learned rapidly and correctly, t9 will have reached a value for which the expected value

Wo •.of reinforcement is high. As with the data of Section 3, one good way to interpret these

data is to compare the highest performance levels attained with each algorithm (each with

its own best value for a). Henceforth, when we talk of the performance of an algorithm

S"on a task, we will mean its best performance on that task, i.e., its performance with the

af value that resulted in the highest performance level. Using this performance measure,
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Figure 20 summarizes the data giving the performances of all algorithms on the first 10

tasks.
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Summary of Algorithm Performance on Tasks 1-10 of Section 4.

,. .,'Discnuson

,-.'-::'..The 12 tasks were chosen to help us investigate the problems of stimulus discrimination

/ "in the face of asymmetrical treatment of the stimuli. For a particular task and stimulus,
..::the preferable action is the one with the highest expected value of reinforcement, as given
• in Table 3. On all tasks, the correct action when stimulus £ is presented differs from that
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when stimulus is presented. To maximize reinforcement, a learning algorithm must

discriminate between, and respond differently to, the twi stimuli. For convenience, all

tasks were constructed so that Action 1 is the best action when stimulus V1 is presented,

and Action 0 is the best when stimulus 9 is presented.*

On all tasks the two stimulus vectors X1 and V' are similar and yet distinguish able.

For Tasks 1-8, these vectors are as given by (7), and for Tasks 9-12, they are as given by

(8). The vectors V and V are similar by virtue of their second components, which are

both positive, and they are distinguishable by virtue of their first and third components,

which are positive for one stimulus and zero for the other.

When V1 occurs, the first and second weight vector components are modified. When

x2occurs, the second and third weight vector components are modified. Since in the

first case Action 1 is correct, and in the second, Action 0 is correct, the first weight

.4. vector component w, becomes positive (associated with Action 1) and the third weight

vector component w3 becomes negative (associated with Action 0), but it is unclear what

happens to the second weight vector component w2 . In the ideal case, the countervailing

influences on "2 would cancel out, leaving w2 near zero. This result would be ideal

.4-. because, by (5) and (6), it would leave the action in response to V determined by w,

and the action in response to V determined by w3. This result would most likely occur

on tasks that are symmetrical with respect to the two stimuli. True symmetry guarantees

that the countervailing influences on "2 are of equal strength.

The tasks of this section were designed in pairs, I with 2, 3 with 4, etc., each pair

* consisting of one binary-reinforcement task and one continuous-reinforcement task. The

first pair of tasks, Tasks 1 and 2, are completely symmetrical with respect to the two

* stimuli. The next 4 pairs, 3-4, 5-6, 7-8, and 9-10, treat the two stimuli asymmetrically

in one, and only one, way. Finally, the tasks of the pair 11-12 combine all 4 forms of

asymmetry.

The cont inuous- reinforcement tasks used in these experiments are significantly easier

*The learning algorithms do naot "4know" which stimulus had which number, so there is no way that
S they can take advantage of this uniformity.
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than the binary-reinforcement tasks. For this reason, the experimt. ts with the continuous-

reinforcement tasks were run for fewer steps than those with the binary- reinforcement tasks

(200 steps as opposed to 1500). If both types of experiments had been run for 1500 steps,

performance differences between some algorithms on the easier tasks would have been lost

* in a ceiling effect since many algorithms would have performed near optimally. Tasks 11I

* and 12 were run much longer than the other tasks for reasons to be discussed below.

In the following discussions we occasionally refer to particular performance differences

between algorithms as being either "significant" or "not significant." By this we are refer-

ring to statistical significance at the P =.05 probability criterion.

Tasks 1 and 2: No Asymmetries - Tasks 1 and 2 are completely symmetrical with

respect to the two stimuli. On these tasks, the stimuli are presented with equal frequency

and equal intensity. On these tasks, the expected values of reinforcement associated with

the two stimuli are equal (although which action has the higher expected value switched

from one stimulus to the other). As discussed above, this symmetry makes these tasks the

least likely to be influenced by the problems of discrimination between similar stimuli.

Tasks 1 and 2 are closely related to Tasks 3 and 6 of Section 3. These tasks have similar

* distributions of expected value of reinforcement as a function of the action selected. On
all four of these tasks the expected value of the reinforcement is positive when one action

* is chosen and negative, by the same amount, when the other action is chosen. For such

tasks we say that the reinforcement is unbiased, i.e., its expected value as a function of

action is distributed symmetrically around zero.

The similarity between Tasks 1 and 2 of this section and 3 and 6 of Section 3 is born

out in similar performances of corresponding algorithms oy; corresponding tasks (compare

Figure 1 and Figure 20). As described in Section 3, Algorithms 4-9 performed essen-

tially perfectly on the continuous-reinforcement task (Task 6) whereas here the closely re-

lated Algorithms 4-9 also performed essentially perfectly on the corresponding continuous-

reinforcement task (Task 2). The binary- reinforcement Task 3 of Section 3 corresponds
* to the binary-reinforcement Task 1 of the present section. The ranking of performance of

.-

68



-. .7 .;_ _--. .r; -. Y%-.

the algorithms is very similar on these two tasks. On both tasks, Algorithm 4 performed

best, followed by Algorithms 5, 8, and 9, whose performances were not significantly dif-

ferent from each other, followed by Algorithm 1, which was in turn distantly followed by

Algorithms 2 and 3. The two new algorithms added in this section, Algorithms 10 and 11,

fell in with the last group of poorest performing algorithms.

Tasks 3 and 4: Reinforcement-Level Asymmetry - On Tasks 3 and 4, when

stimulus P1 occurs, the expected value of reinforcement is always high, and when stimulus

occurs, the expected value of reinforcement is always low. These tasks differ from Tasks

1 and 2 only in that the expected value of the reinforcement is biased in this way. We call

this asymmetry in the treatment of stimuli reinforcement-Level asymmetry. In Section 3

we discussed nonassociative tasks that differed from each other in a similar way. Ignoring

for the moment the generalization between the two stimuli, Tasks I and 2 of this section

are similar to Tasks 3 and 6 of Section 3, and Tasks 3 and 4 of this section are similar to

a combination of Tasks I and 2, and 4 and 5, respectively, of Section 3.

In Section 3 we reported that Algorithm 4 performed the best of all algorithms on the

unbiased tasks and poorly on the biased tasks, and we find a similar result in Tasks 1-4

of this section. The upper graph of Figure 20 shows that whereas Algorithm 4 performed

best of all algorithms on Tasks l and 2, it performed very poorly on Tasks 3 and 4. Along

these same lines, we observed in Section 3 that whereas Algorithm 5 was not a significantly

S..' worse performer than the reinforcement-comparison algorithms, such as Algorithms 8 and

9, on the unbiased tasks, it was a significantly worse performer for the biased tasks. For
Tasks 1-4 of this section we see a similar result. Algorithms 5, 8, and 9 performed nearly

S€.identically on the unbiased tasks, Tasks I and 2, whereas 8 and 9 performed significantly

better than 5 on the biased tasks, Tasks 3 and 4.

On Tasks 3 and 4, the expected value of the reinforcement varies more with the stimulus

presented than with the action selected. This reinforcement-level ,ymmetry poses a

particular challenge to reinforcement-comparison algorithms. Reinforcement-comparison

algorithms that compare 4uccessive reinforcement levels without regard to the stimuli

presented, such as Algorithms 6 and 7, had a diflicult time with these tasks as shown in
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Figure 20. Algorithms 6 and 7 clearly performed much worse than Algorithm 5, which

is not a reinforcement-comparison algorithm, and much worse than Algorithms 8 and 9,

which are more sophisticated reinforcement-comparison algorithms.

The performances of the binary-reinforcement Algorithms 1, 2, and 3 on Tasks 1 and 3

were similar to the perfomnances of the corresponding algorithms of Section 3. Algorithms

2 and 3 performed very poorly on both tasks. Algorithm 1 achieved an intermediate

performance level, significantly better than Algorithms 2 and 3, and significantly worse

than Algorithms 5, 8, and 9.

* ~. Tasks 5 and 6: Reinforcement- Spread Asymmetry - In Tasks 5 and (6 the difference

in the expected value of reinforcement for the two actions is much larger for one stimulus

than it is for the other. For stimulus ~',the expected value of the reinforcement is .1

higher when the correct action is chosen than when the incorrect action is chosen. For

stimulus x , the expected value of the reinforcement changes by .3 (a large amount under

the circumstances) depending on whether the correct or the incorrect action is selected.

These tasks are asymmetrical in the spread between their reinforcement levels for correct

and incorrect actions. In a task with reinforcement-spread asymmetry it is more important

to learn which action is correct for one stimulus than it is for the other. Learning will

generally be more rapid when the reinforcement spread is large than when it is small.

Because of this, reinforcement-spread asymmetry tends to cause the correct action for one

stimulus (in this case, stimulus x-2 to be learned much more rapidly than that for the

other. When the two stimuli are similar, this more rapid learning generalizes strongly to

the other stimulus. When two different actions must be learned to the two stimuli, there

is a danger that generalization from the more rapidly learning stimulus will overwhelm the

- - learning to the other stimulus and cause the incorrect action to become associated with it.

One gets a sense of which algorithms are susceptible to this difficulty by comparing the

relative performance rankings of the various algorithms on Tasks 5-6 nd Tasks 1-2. It

is not meaningful to compare the absolute performance of algorithms between these pairs

of tasks. On the one hand, Tasks 5-6 might be expected to be more difficult than Tasks

1-2 because of rein forcement- spread asymmetry. On the other hand, Tasks 5-0 might be
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expected to be easier than Tasks 1-2 because, for one stimulus, the reinforcement-spread

is larger than in Tasks 1 and 2, which should result in faster learning. Overall it is not

possible to predict with certainty which pair of tasks is the more difficult to master.

The changes in the relative performance rankings of algorithms from Tasks 1-2 to

Tasks 5-6 suggest the following conclusions. First, Algorithm 4 is strongly affected by

reinforcement-spread asymmetry. Whereas in Tasks 1 and 2 it performed the best of all

algorithms, in Tasks 5 and 6 it performed significantly worse than Algorithms 5, 8, and 9.

Second, all the binary-reinforcement algorithms, Algorithms 1, 2, 3, 10, and 11, performed

significantly worse than the better performing algorithms (5, 8, and 9). For some reason

Algorithm 10 performed significantly better vis-a-vis Algorithms 2, 3, and 11 on Task 5

than it did on task 1, but its performance was still very poor.

The effect of reinforcement-spread asymmetry on the performances of Algorithms 5, 8,

and 9 is less clear. On Tasks 1 and 2 all three algorithms performed equally well. On Task

5 Algorithm 8 performed better than 5 and 9, but only the improvement over Algorithm

5 is statistically significant. On Task 6, Algorithms 5 and 8 both performed significantly

better than Algorithm 9.

• Tasks 7 and 8: Stimulus-Prequency Asymmetry In Tasks 7 and 8 one stimulus

" is present(. three times as frequently as the other. Learning about the more frequently

. presented stimulus generally occurs more rapidly than learning about the other, simply
because there is more experience with it. This asymmetry in learning rate can lead to

an overwhelming of the more slowly forming association by generalization from the faster

one, as discussed above for reinforcement-spread asymmetry.

The effect of this stimuls-frequency asymmetry on the performances of the various

algorithms was very similar to the effect of reinforcement-spread asymmetry. Algorithm 4

was strongly affected, performing significantly worse than Algorithms 5, 8, and 9, whereas

it was the best performer on Tasks 1 and 2. On Task 7 the a!gorithms designed for

binary-reinforcement tasks, Algorithms 1, 2, 3, 10, and 11, produced strikingly similar

performances to those they produced on Task 5. Algoritbm 1 was best, performing at the
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same level as Algorithm 4. Algorithm 10 was again significantly better than 2, 3, and 11,

though again, it still performed poorly.

The effect of stimulus-frequency asymmetry on Algorithms 5, 8, and 9 is unclear (as

* is the effect of reinforcement-spread asymmetry). Recall that on Tasks 1 and 2 these

three algorithms performed equally well. On Task 7 their performances fell in the same

rank order as they did on Task 5 (8 then 9 then 5), but here none of the differences are

statistically significant. On Task 8, Algorithms 8 and 6 were better than Algorithm 9, but

only Algorithm 8 significantly so.

Tasks 9 and 10: Stlmulus-Jntenslty Asymmetry - In Tasks 9 and 10 one of the

two stimuli is three times as intense as the other (the two stimuli are given in (8)), whereas

in Tasks 1 and 2, the stimuli have the same intensity (see (7)). This is the only difference

between Tasks 9 and 10 and Tasks 1 and 2.

This etimua-intenuity asymametry also causes an action to be learned more rapidly for

one stimulus than for the other. AD learning algorithms considered in these experiments

use a factor ( zi ]) that depends on the intensity of the stimulus presented. Larger changes

are thus made in the weight vector tu3 on those trials on which the more intense stimulus

vector occurs than on the trials on which the less intense stimulus vector occurs. As

in stimulus-frequency asymmetry and reinforcement-spread asymmetry, this asymmetry

in the rate of learning creates the danger of the more slowly forming association being

overwhelmed by generalization from the faster one.

The results for Tasks 9 and 10 are similar to those on Tasks 3-8. Algorithm 4 was again
strongly affected by the asymmetry, performing significantly worse than Algorithms 5, 8,

and 9, whereas it was the best performer on Tasks 1 and 2. Algorithm 1 performed almost

exactly the same as Algorithm 4. The other binary-reinforcement algorithms, Algorithms

2, 3, 10, and 11, had the poorest performance of all algorithms. Although Algorithms 5,

8, and 9 maintained the same ordering as they did on Tasks 7 and 8 (8 then 6 then 9),

there were no significant differences between their performances.
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Tasks 11 and 12: Combined Asymmetries - Tasks 11 and 12 combine all four

of the asymmetries present individually in Tasks 3-10. Reinforcement-level asymmetry,

reinforcement-spread asymmetry, stimulus-frequency asymmetry, and stimulus-intensity

* asymmetry are combined in such a way that their effects are additive rather than subtrac-

tive. As discussed above, each of these asymmetries results in learning to one stimulus

proceeding at a more rapid rate than learning to the other stimulus. In Tasks 11 and

12, the favored stimulus with respect to all three asymmetries is the same stimulus, x-2

Stimulus i0 is presented with greater frequency, with greater intensity, and has a greater

* reinforcement-spread, than stimulus il . The combination of these asymmetries makes the
task much more difficult than does any of them alone.

The experiments involving Tasks I1I and 12 ran for many more steps (see Table 3) than

* the experiments involving the other tasks. One reason for this is that Tasks 11 and 12,

since they combine four asymmetries, were expected to be more difficult than tasks 1-10.

However, Tasks 11 and 12 contain weaker forms of these asymmetries than are present

-. in Tasks 3-10. In addition, the stand .1d deviation of the noise in the reinforcement for

the continuous-reinforcement task (Task 12) is lower (a = .1 instead of a = .025), and

the reinforcement spreads for the binary-reinforcement task (Task 11) are larger. These

differences make both of these tasks less difficult than Tasks 3-10.

The real motivation behind the selection of Tasks 11 and 12 was to study the con-

vergence behavior of the various algorithms. With these tasks we were less interested in

- how rapidly learning proceeds and more interested in the ability of various algorithms to

ultimately choose the correct actions.

The results of Tasks 11 and 12 are not included in Figure 20, but are shown in Figures

-21 and 22. The experiments appear to have been run long enough for all algorithms to

show the performance levels to which they would have converged, with the exception of

Algorithm 2 on Task 11 and Algorithm 5 on Task 12. All the other algorithms appear to

converge to one of two performance levels, shown as two dashed lines on each graph.

The higher of the two performance levels indicated by dashed lines is the maximum

possible performance level for these tasks. This performance level would have been ob-
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Figure 21

Algorithm Performance on Task I1I of Section 4.

tamned were the optimal action chosen with probability one for both stimuli. Algorithms 1,
5, 8, and 9 appear to have converged to this performance level on Task 11, and Algorithms

.'-*. 8, and 9 appear to have converged to this performance level on Task 12. Task 12 appears

not to have been run long enough for Algorithm S to converge. The highest performance

level for Algorithm 5 is significantly lower than that of Algorithms 8 and 9. Most likely,

Algorithm 5 also converges to the optimal performance level on this task but converges

more slowly than Algorithms 8 and 9.

The lower of the two dashed lines shown in each graph of Figures 21 and 22 indicates the
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Algorithm Performance on Task 12 of Section 4.

expected performance level achieved if Action 0 is selected with probability one in response

to both stimuli. This action is the better action in response to one stimulus but the poorer

action in response to the other. This is the performance level that is obtained by a system

01 that learns the correct action for the stimulus for which there is faster learning and allows
this learning to overwhelm correct learning to the other stimulus through generalization.

Convergence to this performance level indicites a failure to discriminate. The performances

. of Algorithms 3, 4, 10, and 11 appear to converge to this level on Task 11, and the

performance of Algorithm 4 appears to converge to this level on Task 12.

These results on Tasks I1I and 12 do not prove that any algorithm converges or does not

converge. Algorithms that appeared to converge to one of the performance levels indicated

by dashed lines may actually converge to slightly different levels. Algorithms that failed to

converge during the run of these experiments, or that appeared to converge to a suboptimal

level, may converge to the optimal performance level if sufficiently small a values are used

and the experiments are run long enough. The only way to definitively prove convergence

of such algorithms is by mathematical analysis. These results do, however, strongly suggest

what the results of such an analysis might be and provide practical indications of how the

algorithms are likely to perform.
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* -: Conclusion

There are a number of similarities between the data of this section and those of Section

3. Here, as there, the algorithms designed purely for binary-reinforcement tasks (Algo-

rithms 1, 2, 3, 10, and 11), with the exception of Algorithm 1, performed uniformly poorly

across tasks. In the experiments of both sections, Algorithm 1 performed better than the

other binary-reinforcement algorithms, but performed clearly worse than Algorithms 5, 8,

and 9. In both sections, Algorithm 4 performed erratically across tasks, performing best

on a few, very poorly on a few, and significantly worse than the best algorithms on the

others.

-:As anticipated, the algorithm that simply compare the current and the immedi-

ately preceding reinforcement levels, Algorithms 6 and 7, performed much worse on these

- U..associative-learning tasks than they did on the nonassociative tasks of Section 3. These

algorithms also performed significantly worse than Algorithms 5, 8, and 9 on the tasks of

the present section.

The best performing algorithms across the tasks of this section were Algorithms 5, 8,

and 9. It is not entirely clear which of these performed best. Of the three, Algorithm 9

performed significantly better on Tasks 3 and 4, but significantly worse than Algorithm

8 on Tasks 8 and 10, and significantly worse than both Algorithms 5 and 8 on Task 6.

The only completely clear ordering that can be made among these three algorithms is that

Algorithm 8 was better than Algorithm 5. Algorithm 8 performed as well or better than

Algorithm 5 on every task, and significantly better on Tasks 3, 4, 5, and 10. In addition,

both Algorithm 8 and Algorithm 9 performed significantly better than Algorithm 5Son

Tasks 11I and 12.

Whether Algorithm 8 or Algorithm 9 is better apparently depends on the nature of

the task. Although the performance of Algorithm 8 was better than or equal to that of

Algorithm 9 on all tasks except Tasks 3 and 4, it is possible that "real-life learning tasks

resemble Tasks 3 and 4 more closely than any of the other tasks considered. Each of

these tasks is a special case, and we have made no attempt to characterize what a real

'typical case' might look like. However, the fact that on these tasks Algorithm 8 makes
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a serious bid for the place of best performer is significant in light of the results of Section

* -i.:3. In the experiments described in Section 3, Algorithm 8 performed strictly inferior or
equal to Algorithm 9. The change from nonassociative to associative learning tasks makes

* Algorithm 8 a better performer vis-a-vis Algorithm 9.

* Since the performance of Algorithm, 5 was strictly inferior to that of Algorithm 8 on

these tasks, these results corroborate the results of Section 3 with regard to reinforcement-

comparison algorithms. In the experiments of both sections the best performing algorithms

across tasks were reinforcement-comparison algorithms.

As discussed earlier, and as is illustrated by the poor performance of the reinforcement-

* comparison algorithms, Algorithms 6 and 7, construction of a satisfactory reinforcement-

* comparison algorithm for associative learning is not a trivial task. The difficulties may

be part of the reason researchers have avoided reinforcement-comparison algorithms, even

for some types nonassociative learning. In this regard, the excellent performance of the

more sophisticated reinforcement-comparison algorithms, Algorithms 8 and 9, is particu-

larly important. This result demonstrates that algorithms can be designed for associative

learning that can benefit from the advantages of a reinforcement-comparison mechanism.

The advantages of reinforcement comparison can be obtained in associative-learning tasks

as well as in nonassociative-learning tasks.

Perhaps the most important result of the experiments described in this section is the

34 poor performance of Algorithm 4. Not only did Algorithm 4 perform much worse than

V Algorithms 5, 8, and 9 on all tasks involving any form of stimulus asymmetry, but the
.'*.~ ~qresults of Tasks 11 and 12 suggest that this algorithm is unable to discriminate properly.

On Tasks 11 and 12 this algorithm appears to converge to the incorrect choice of action.

Yet Algorithm 4 appears to be the most straightforward implementation of the basic

principle of associative reinforcement learning using the linear-mapping approach. In

HMO fact, of the algorithms considered here, Algorithm 4 is the algorithm most nearly like
that of Farley and Clark (1954), which is one of the few associative reinforcement learning

algorithms using the linear-mapping approach that has been computationally investigated.
This also appears to be essentially the algorithm informally discussed by Minsky and
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Seifridge (1961). The failure of this common-sense rule to produce effective learning in

all but the simplest situations suggests that associative reinforcement learning involves

subleties that were not recognised by early Al and cybernetic researchers.
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Section 5

DELAYED REINFORCEMENT

Introduction

The simulations discussed in previous sections concerned learning problems in which

actions affect only the reinforcement received on the next time step. We 'call such tasks

immediate-reinforcement tasks. Tasks in which the effect of an action on reinforcement is

delayed by two or more time steps we call delayed-reinforcement tasks. Delayed reinforce-

ment can create a difficult (temporal) credit-assignment problem. When the reinforcement

due to an action immediately follows that action, the only difficulty in assigning credit to

the action is in interpreting the reinforcement as being higher or lower than usual (the

reinforcement-comparison problem). *If there is additional uncertainty about which of

the preceding actions caused the reinforcement, credit assignment becomes more difficult.

The uncertainty that usually accompanies delayed reinforcement, rather than the delay it-

self, causes the difficulty. If reinforcing events are always delayed by a fixed amount known

a priori, then the design of the learning system can take into account the fixed delay, and

credit assignment need not be more difficult than it is with immediate reinforcement. On

the other hand, if the delay is not known, then it increases uncertainty about the causal

relationship between action and reinforcement, which makes temporal credit assignment

more difficult. One cannot expect to find algorithms that completely eliminate this diffi-

culty. One can, however, attempt to find learning algorithms whose performance degrades

gracefully as uncertainty due to delay between action and reinforcement increases. As we

show below, the algorithms we have considered so far require modification before they can

d, work effectively on delayed reinforcement tasks in which no a priori knowledge of the delay

is assumed.

4 Issues concerning reinforcement anticipation and secondary reinforcement were ex-

S. cluded from the experiments discussed in this section. In none of the tasks considered do

Although there will remain the difficulty of assigning credit to the individual decisions determining
the action (structural credit assignment).
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actions affect subsequent neutral stimuli. All tasks considered in the present section either

have no neutral stimuli or have neutral stimuli selected randomly. Therefore, there is no

way for a learning system to use neutral stimuli to anticipate reinforcement, and thus no

opportunity for secondary reinforcement to contribute to the learning process.

Eligibility Traces

How can the algorithms described in the preceding two sections be generalized to work

with delayed as well as immediate reinforcement? We set aside for the moment the problem

of generalizing reinforcement-comparison mechanisms. Assume that we have available a

reinforcement signal f that already incorporates reinforcement comparison, but whose

evaluations are delayed.

Perhaps the most general heuristics for assigning credit in the face of delayed rein-

forcement are those of frequency and recency. According to the frequency heuristic, one

assigns credit to past decisions according to how many times they occurred. If one action

had been made once in response to a particular stimulus in the time preceding reinforce-

ment, and another action had been made twice, then the second action, according to the

* frequency heuristic, is twice as likely to have caused the reinforcement and thus deserves

twice as much credit for it. According to the recency heuristic, one assigns credit for cur-

rent reinforcement to past actions according to how recently they were made. Perhaps the

simplest way of implementing this heuristic is to assign credit according to a monotonically

decreasing function of the time between action and reinforcement that approaches zero as

this time approaches infinity. One way of doing this is to assign credit according to an

exponentially decreasing function Ak of number k of time steps elapsing between action

and reinforcement.

The following learning rule combines the frequency heuristic and an exponentially

decaying recency heuristic:

SW,[t + 11 =Widt] + a f[t + 11(l A) 2Akei[t -k], (1
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for t > 0 and i = 1,...,n where t9[t] = (wi[t],...,w,[t]) is the vector of action-

ass9ciation weights (mapping stimuli to actions), el[tJ is the eligibility of its ith com-

ponent, as discussed in Section 4, a is a positive learning constant, and f[t + 1] is the

heuristic reinforcement. The eligibility ei[t] can be regarded as the credit that should be

assigned to wi for a "unit credit" assigned to the behavior at time t. Ak is the credit

that should be assigned, according to an exponential recency heuristic, to the behavior

at time t - k given that a unit reinforcement was received at time t + 1. The product

p[t+ 11Ake[t-k] therefore is the credit due to the behavior at t-k that should be assigned

to wi given f[t + 1]. The frequency heuristic is implemented in this rule by summing up

the credit due to the behavior at all past times. The factor (1 - A) in the learning rule

normalizes the sum. If A is near 1, then the credit assigned to an action falls off slowly

as a function of increasing time between that action and the occurrence of a reinforcing

event; if A is near 0, then credit falls off rapidly. For A = 0, (11) reduces to the form

used in the learning rules of Section 4. In describing the experiments to follow, we use the

parameter 6 = 1 -A.

Equation 1 implements frequency and recency heuristics by means of an exponentially

decaying backwards-averaging kernel. It is reasonable to regard a kernel of this general

form as appropriate for learning situations in which nothing specific is known about under-

lying cause and effect relationships. Alternatively, it might be justifiable to assign credit

according to an inverted U-shaped function of the time between action and reinforcement

as suggested by Klopf (1972, 1982). This choice could be regarded as reflecting the distri-

bution of the durations of the feedback pathways in which the learning system is embedded.

In general, one would expect learning performance to improve to the extent that the shape

of this kernel incorporates knowledge about the expected temporal relationship between

cause and effect for particular types of transactions with particular environments. Idea!ly,

perhaps, the kernel should resemble the cross-correlation of the action and reinforcement

processes. In our research to date, no attempt has been made to use any knowledge of this

type even though some ariount of such knowledge is likely to be available about specific

environments. 1. a have j not considered algorithms for adaptively adjusting the form of

kernel (e.g., by ad. • ting A in the kernel above or by estimating the action/reinforcement
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cross-correlation), but such methods would have obvious utility.

A major advantage of the exponential decay form of the recency heuristic is that it

allows the sum in (11) to be computed iteratively. Let us define a trace operator that maps

any time sequence e4 into the time sequence i defined by

9-I

,[tl = (I- A) EIke,[t_ kl
k=0

for t > 0, where i [01 = 0. Then the algorithm for iteratively computing this trace can

be derived as follows:

t-1

t= (I- A) E Ake, t- k]
k=O -2 (12)

= (I- A)e,[t] + (1 - A) E- - 1)k
k=O

= (1 -A)etJ + A4[t - 1],

for t > 0. Although it requires only a single memory variable per component of W-, the

above iterative algorithm is equivalent to remembering all past behavior and then applying

frequency and exponential recency heuristics as in (11). The algorithm given by (12) is a

standard recursive linear discrete-time filter.

When ei is an eligibility time sequence as defined in Section 4, we call 4i an eligibility

trace. All algorithms of this chapter update W' by (11), which we rewrite using 1i as:

w,[t + 11 = w,[t] + a ^[t + 11F.t1. (13)

When A = 0 (8 = 1), 9. reduces to ei, and (13) reduces to the same form as used in

the algorithms of Section 4. For the even numbered algorithms of this section (4, 8, and

10) eijt] is defined as (y[t] - )x[t], and for the odd-numbered algorithms (5, 9, and 11)

e,[t] is defined as (y[t] - r[t])z[tJ , where y[t] E (0, 1} is the action taken at time t, ir[t]

is the probability that y[t] = 1, and zi[t] is the i th component of the stimulus vector at
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time t. Otherwise, the algorithms differ only in the reinforcement-comparison mechanism

used in forming f, a subject we consider next. Table 5 summarizes all of this section's

algorithms.

Reinforcement Comparison Under Delayed Reinforcement

One can view reinforcement-comparison algorithms as constructing a reinforcement

signal i by comparing the primary reinforcement r with a predicted reinforcement p[t]:

^t + 1] _it + 11- p[t]. (14)

We call any reinforcement signal, such as this one, that is computed by the learning system

a heuristic reinforcement signal. As discussed in Section 4, the predicted reinforcement

p[t] is computed from the stimulus vector [t] by means of a reinforcement-association

vector ii[t]:

pI = vi tl,[t]. (1s)

The reinforcement association vector V is updated according to a variation of the Widrow-

Hoff rule (Widrow and Hoff, 1960):

v,[t + 11 = vi[t + 8 ^It + 1]z,[t, (16)

where vi[0] = 0, and 8 is a positive constant. Since ptt] is an estimate of r[t + 1]

It + 1 = r[t + I - p[tJ is an error term. This learning rule correlates these errors with

-3 the stimuli that were present immediately before them and adjusts V in such a way as to

reduce the error.

One way to generalize (16) to delayed reinforcement is to correlate the error f with

, all preceding stimuli, weighted according to their frequency and their recency in a manner

similar to that discussed above for weighting past eligibilities:
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Table 5

. Learning Algorithms of Section 5

Number Update Rule

4,5 w,[It + 11 = w,[tj + arlt + lfr,(I#]

8,9 wt,[t + 11 = wi[t] + a(r[t + 11- pt])&,[t]

vft + 11 = viIt + $(rIt + 11 - pltl)i it]

10,11 wit + 11 = will) + a(rjI + 1) +pIl)e,lt

v,[1 + I = viii] + (r[1 + 11 + pitj)'i[ti

Where:

f (u1 -1/2)zi Ij, for ven numbered algorithms;
C .i t ((i- r[uj)z ,tj, for odd numbered algorithms.

MO,[o=0 v,[oi=o glle (1,0) a>o =.05 0<y<I

{1, if .it] + fill] > 0;

puil O, otherwise.

where jjt is a normally distributed random variable of mean 0 and standard deviation .1, and

si]= Fu'gii1zi It]

zit is the probability that yltl=l, given 2181

pill = i vlt]x,i P101 =rill
i=1

For any time sequence z[th, rill is defined by

'11 = (I - 6)2i1 - I]+ 6zl z z[o] = 0 0 < 6 < I
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. ~~,[t + 11 = V,[t] +' 4 [t + 1](1 - ) kX,[t- l1)ka--0

+i = t3 [tk=O (17)
= ,J [t] + P f [t + ll2 [t + 1],

where A, 0 < A < 1, is an exponential decay rate as discussed above.

Equations (14), (15) and (17) constitute the mechanism used by Algorithms 8 and 9 of

this section for constructing and updating the heuristic reinforcement signal. Algorithms

4 and 5, on the other hand, use f[t] = r[t] and so do not require the computation of

predicted reinforcement.

The reinforcement-comparison mechanism of Algorithms 10 and 11 is based on the idea

that on delayed reinforcement tasks, the prediction of reinforcement at time t + 1 should

depend on all past stimuli rather than on just the stimulus at time t. These algorithms

compare primary reinforcement with a trace of the past predicted reinforcement levels:

fji + I] = r1t + 1 -pit + 1]. (18)

Algorithm 10 uses P as given by (18) both to update the action-association vector 10 by

(13) and the reinforcement-association vector V" by (16).

Experiment 1: The Effect of Delay

In this experiment we returned to nonassociative (or reinforcement-only) tasks to illus-

trate how severely delayed reinforcement can influence the learning process. Each task is

an unbiased continuous-reinforcement task. When the correct action (Action 1) is taken,

the expected value of the reinforcement is +.1, otherwise it is -. 1. In either case, the

reinforcement is chosen from a normal distribution of standard deviation a, = .1.

We simulated seven tasks that differ only in the extent of the delay between the time

of an action and the time of the delivery of the resultant reinforcement. Delays of 0, 5, 10,

15, 20, 25, and 30 time steps were used, where a delay of 0 means that r[t + 1] is due to

y[t], as in the tasks of preceding sections, and a delay of 5 means that r[t + 1] is due to
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A major purpose of this experiment was to compare the difficulty of tasks as a function

of the length of the delay between action and reinforcement. Therefore, care was taken

regarding the number of steps of each run. If each run were allowed to last 15 steps, then

the task with a delay of 0 would include 15 reinforcements relevant to the actions taken on

the run, whereas the tasks with nonzero delays would include fewer. Tasks with delays of

15 or more would include no reinforcements relevant to the actions taken. To ensure that

the same number of relevant reinforcements were delivered on all tasks, each task's runs

were extended by the length of the task's delay. The runs of the task of zero delay ran 15

steps, those of the task of delay 5 ran 20 steps, etc. For those runs with a nonzero delay,

the reinforcement values for some of the first steps (as many as the length of the delay)

were not influenced by any action and were set to zero.

Only Algorithms 4 and 5 were used in Experiment 1. As discussed above, these two

algorithms are straightforward extensions of the like-numbered algorithms of the Section

4 to include exponentially decaying eligibility traces. If 6 = 1, then Algorithms 4 and 5

of the two sections would be identical. For each task, i.e., for each delay value, and for

each of these two algorithms, 200 runs were simulated for each combination of a range of

values for the a and 6 parameters. The a values used were the powers of two from 2-1

to 213 , and the 6 values used were the powers of 2 from 20 to 2-6.

The algorithms listed in Table 5 are all written as if they are associative-learning

algorithms in that their eligibility factors include ti, making them dependent on the

* stimulus presented. For the nonassociative experiments of this section, we assume that

*the vectors (ti 'Iv-I, and E) are of length 1, and that the single stimulus component x[ tj

is always 1. Under these assumptions, the associative forms of the learning algorithms

reduce to the corresponding nonassociative forms.

At the end of each run the probability of a correct choice on the next siep was comn-

* puted. The average of this probability over the 200 runs, with a given task and algorithm,

is the measure of performance plotted in the graphs and discussed below. By looking se-

lectively at different parts of the large array of data generated by this experiment, various
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issues regarding the effect of delayed reinforcement on learning can be highlighted. The

C. first issue is how well the algorithms without eligibility traces performed on the delayed-

reinforcement tasks. Recall that when 8 = 1 there are, in essence, no traces, and the

algorithms are the same as those of the preceding sections. Figure 23 plots performance

.4 versus delay for Algorithms 4 and 5 with 6 = 1. In both cases the data are shown for a

few representative values for a ( a = 21, 23, 25, 27, and 29 ). The data for Algorithm 4 are

in the upper graph and the data for Algorithm 5 are in the lower graph. Note how rapidly

performance decreases as the delay increases. As one would expect, for any nonzero delay

these traceless algorithms performed only at, or very near, the chance level.
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With exponentially decaying eligibility traces, the performances of Algorithms 4 and

5 degrade more slowly as the delay length increases. Figure 24 presents the same data as

in Figure 23, but from simulation runs with 6 = 2-6. Note that even with traces, the

performances of these algorithms drop sharply as the delay between action and reinforce-

- -. ment increases. Traces can make learning possible with delayed reinforcement, but they

cannot prevent it from becoming much slower. Also note that although traces increase

performance on the tasks with delayed reinforcement, they tend to decrease performance

on the immediate reinforcement task. This tradeoff is seen most clearly in Figure 25 which

shows performance as a function of S. Each curve shows the performance of the algorithm

with a = 23 for the pai-ticular value of 6 that is marked near the curve. The use of longer

traces (smaller S 's) enabled considerable learning to take place even at long delays. Note

that the low- 6 versions of each algorithm performed best when reinforcement was delayed,

and the high- 6 versions performed best when reinforcement was immediate.

Experiment 2: Sooner In Better

According to the recency heuristic, the sooner a reinforcing event follows an action

the larger its effect in encouraging the action to recur. This heuristic involves a danger

of weighting quick reinforcement more heavily than is appropriate. Experiment 2 was

designed to demonstrate this danger for the recency heuristic as embodied in eligibility

traces.

Experiment 2 involved a single continuous-reinforcement task in which the reinforce-

ment signal is defined by

r~t + 11 = 1s[tJ + .2(1 - y[i - 21),

-J where r is the reinforcement signal, and 3,[t] E (0, 1) is the action selected at time t

(defined to be 0 for t < 0). Both Actions 1 and 0 have positive influences on subsequent

reinforcement, but whereas Action 0 has a +J1 influence on the immediately following

reinforcement, Action 1 has a +.2 influence on the reinforcement 2 steps later. If these

two influences coincide, then they add, and the resultant reinforcement is +.3. If neither
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influence applies to a reinforcement value, then it is 0. There is no randomness in the

reinforcement signal in this task.

If Action 1 were selected every time step, a reinforcement of +.2 would occur every

time step, and if Action 0 were selected every step, a reinforcement of +J1 would occur on

every step. Action 1 is clearly the correct action in the long run, but in the initial stages

of learning when Actions 1 and 0 are both being tried intermittently, Action 0 has some

advantage because the reinforcement it causes is delivered more quickly than that caused

by Action 1.

Does this asymmetry regarding the speed with which reinforcement is delivered se-
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riously disrupt either the speed of learning or the ability to select the better action for

some algorithms? To measure the extent of disruption, performance on this task must

be compared with that on a task without the asymmetry. One reasonable such 'control

task' is one with the same reinforcement levels for the two actions, +.1 and +.2, but

with delays both equal to the length of the longer delay in the asymmetrical task (2 time

steps). This control task differs from the asymmetrical one only in that one delay has been

lengthened from 0 to 2 steps. Since the results of Experiment 1 show that lengthening

the delay under these conditions normally makes learning more difficult, if an algorithm

t0o
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performs better on this control task than it does on the asymmetrical task, then it must

be due to the removal of a harmful effect of the asymmetry.

For both the control task and the asymmetrical task, simulations were run for all 6

algorithms with each combination of a range of values for the parameters a and 6. The a

values used were the powers of 2 from 2-5 to 23, and the 6 values used were the powers

of two from 20 to 2. For each task, algorithm, and parameter setting, 500 runs of

% 11 exactly 200 steps were simulated. At the end of the 200 steps of each run, the probability

w[2011 of performing the correct action (Action 1) on the next step was recorded. This

probability was averaged over the 500 runs to yield a measure of performance on each task

for each algorithm at each parameter setting.

* Figure 26 shows the highest performance level achieved at any of the values of a

tried for each task, algorithm, arid 6 value. The upper group of plots are all due to

performances on the control task, and the lower group of plots are all due to performances

on the asymmetrical task. The horizontal dashed line indicates the performance level that

would have been attained if actions had been selected totally at random throughout the

* :...~:experiment. This was also the initial performance level.
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All algorithms performed significantly worse on the asymmetrical task than they did

on the control task. The best performance of every algorithm on the control task isU significantly better than its best performance on the experimental task. In addition, at
each of the first four 6 values, where each algorithm achieved its best performance, every

algorithm performed significantly better on the control task than on the asymmetrical task.

This strikingly poor performance of all algorithms on the asymmetrical task compared to

* their performance on the control task illustrates how debilitating the asymmetry can be.

For 6 = 1 and 6 -'(the two highest 6 values), every algorithm performed sig-
2

nificantly worse than the chance level. This indicates that algorithms performed poorly

on the asymmetrical task not just because they learned slowly, but because they actually

learned to choose the wrong action. In these cases better performance would have been

attained with a learning constant ot = 0, i.e., with no learning at all.

It is possible to mathematically determine the 'critical value for 6, above which the

incorrect action is learned, and below which the correct action is learned. As discussed

earlier, the eligibility of an action decays as (1 - 6 )k, where k is the number of time

steps since the action was selected. Since the effect of reinforcement on an action is

proportional to both the size of the reinforcement and the eligibility of the action, the

effect of a reinforcement of size r delayed by k time steps is r(1 - 6)k. Whether a quick,

* small reinforcement, or a slow, large reinforcement is the more effective depends on which

results in a larger value for r( 1 - 6)k. The "critical value" for 6, therefore, is that for

which r(1 - 6)k is equal for the two reinforcements. For the reinforcement sizes and delays

in Experiment 2, the "critical value' is that 6 for which:

Solving for 6 yields 6 = 1 - Nvi7/ m .293. Since the first two 6 values used in Experiment

2 are above this value, and these are the cases in which the incorrect action was learned,

this value is consistent with the simulation results.

* The primary result of this experiment is that all of these algorithms performed poorly in
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the face of different delay lengths for different actions. This experiment also indicates some

significant differences between the performance level of the various algorithms. In partic-

ular, the reinforcement-comparison algorithms and the algorithms using eligibility terms

involving y[tj - 1 performed better than those without these characteristics. However,

we defer discussion of the relative abilities of these algorithms to the next 2 experiments,

which make systematic comparisons.

Experiment 3: Comparison of Algorithms on Nonassoeiative Problems

Experiment 3 was essentially a repetition of the three continuous-reinforcement, nonas-

sociative tasks examined in Section 3, only this time with delayed reinforcement. The

intent, as in Section 3, was to compare the performances of the various algorithms.

On all 3 tasks the reinforcement is delayed by 5 time steps for either action. On all

tasks Action I is the better action. The tasks are called "high," "low," and "middle"

tasks, according to their distribution of possible reinforcement values. On the high task,

selection of Action 1 results in reinforcement 5 steps later of +.2, whereas selection of

Action 0 results in reinforcement of +.I. The reinforcement values for the low ta.sk are

- .1 and - .2, and for the middle task, +.05 and -. 05, for Actions 1 and 0 respectively.

In all cases the reinforcement depends determiistically on the action chosen.

For all three tasks, simulation runs were performed for all 6 algorithms with each

combination of a range of values for the parameters a and 6. The a values used were

the powers of 2 from 2-3 to 29 , and the 5 values used were the powers of 2 from 20 to

2-7. For each task, algorithm, and parameter setting, 200 runs of exactly 200 steps each

were simulated. At the end of the 200 steps, the probability ir[2011 of performing the

correct action (Action 1) on the next step was computed and recorded. This probability,

averaged over the 200 runs, is the performance measure for each combination of algorithm

and parameter setting on each task.

Figures 27, 28, and 29 summarize the data from a single task of Experiment 3. Each
- S point in these graphs represents the best performance level of a particular algorithm at a

particular 6 value on a particular task. These performance levels are those with the a
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Performances of Algorithms on the High Continuous-Reinforcement Nonassociative
Task.
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Performances of Algorithms on the Lowi Continuous- Reinforcement Nonassociative Task.

value for each task, algorithm, and 6 value that resulted in the best performance.

On the high and low tasks all the reinforcement-comparison algorithms performed

better than all the algorithms that do not employ reinforcement comparison. On the
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Performances of Algorithms on the Middle Continuous-Reinforcement Nonassociative
*0 Task.
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middle task, Algorithm 5, a non-reinforcement-comparison algorithm, performed better

than reinforcement-comparison Algorithms 8 and 10. On this task, Algorithm 5 and the

Pother two reinforcement-comparison algorithms, Algorithms 9 and 11, all performed at the

optimal level, so that any performance difference between them was lost in a ceiling effect.

Recall that with 6 = 1, all algorithms become identical to those developed for im-

mediate reinforcement and discussed in preceding sections. The good performance of

the reinforcement-comparison algorithms, together with the fact that in all cases their

best performance was attained at a 6 value less than 1, provide evidence that the new

reinforcement-comparison algorithms have been generalized properly for application to

tasks with delayed reinforcement.

The performances of the algorithms using y[t] - ir[t] in their eligibility factors (Al-

gorithms 5, 9, and 11), as contrasted to those using y[t] - I in their eligibility factors

(Algorithms 4, 8, and 10), are generally similar to those described in Section 3. On the

low and middle tasks, those algorithms using y[t] - irt] were clearly superior in most

cases. On high task, the y[t] - ' algorithms were sometimes clearly best. This pattern

is similar to that found in Section 3 with immediate-reinforcement tasks. In both cases
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the combination of reinforcement comparison and ydtI - irntl eligibility tended to improve

performance in most cases.

- Experiment 4: Reinforcement Delay Asymmetry in Associative Learning

The experiments Section 4 measured the influence on performance of four different

kinds of asymmetry in the treatment of stimuli on associative-learning tasks and attempted

to relate performance differences among algorithms to features of those algorithms. De-

layed reinforcement creates the possibility for another type of asymmetry between stimuli:

-' Reinforcement for an action chosen in response to one stimulus may be delayed more than

reinforcement for an action chosen in response to a second stimulus. Experiment 4 adds

this reinforcement-delay asymmetry to those of the preceding section.

Reinforcement-delay asymmetry is not to be confused with the asymmetry studied in

* Experiment 2 of this section. The asymmetry of Experiment 2 is an action asymmetry

rather than a stimulus asymmetry. In Experiment 2's task, the actions are treated differ-

ently, whereas in Experiment 4's task, as in the tasks of Section 4, the stimuli are treated

asymmetrically.

As in most of the tasks of the preceding section, Experiment 4's task involves two

* stimuli presented at random with equal frequency. The two stimuli are similar and yet

correspond to different optimal actions. The two stimuli are

f, I ~and - I

Actions chosen in response to V2 influence reinforcement on the next step (i.e., im-

mediately, no delay), and actions chosen in response to X- influence reinforcement after

a delay of 4 steps. In either case, actions have either a +J1 influence on subsequent rein-

forcement or a - .1 influence. In response to V~, Action 0 is the action with the positive

influence, whereas in response to z-1, Action 1 is the action with the positive influence.

* If influences from two actions in response to two different stimuli both influence the same
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reinforcement value, their influences summnate, e.g., if y[t] =0 is selected in response to

xt = 522 and y~t - 4] = 1 is selected in response to it - 4] = V, then r[t + 1i, is +.2. If

a reinforcement is not influenced by previous action, it remains zero. In the tasks of this

experiment, reinforcement is computed deterministically from the actions selected.

Simulations were performed for all 6 algorithms with all combinations of a range of

values for the parameters ct and 6. The a values used were the powers of 2 from 2-5

to 26s, and the 6 values used were the powers of 2 from 20 to 2-7. For each algorithm

and parameter setting, 200 runs of exactly 150 steps were simulated. At the end of each

run, the final weight vector tii[151] was recorded. From this, the probability of selecting

each action in response to each stimulus, and the expected influence on reinforcement of

the next action, was computed as described in Section 4. The expected influence of the

next action on subsequent reinforcement is a good measure of performance on a particular

run. This measure was averaged over the 200 runs to produce a performance measure for

each algorithm with each parameter setting.

Figure 30 summarizes the data from Experiment 4, showing only the performance levels

for the a value associated with maximum performance for each algorithm and S value.

* Algorithms 9 and I1I attained the highest performance levels, and were especially superior

* at low 6 values. This result suggests that reinforcement-comparison and the use of an

eligibility term including y~t] - irltj, as opposed to 3I[t] - ., produce better performance

on this task than the alternative mechanisms.

Conclusion

Reinforcement learning tasks with delayed reinforcement are much more difficult than

corresponding tasks with immediate reinforcement because of the uncertainty introduced

as to which actions cause which reinforcing events. The algorithms studied in previous

sections were designed for immediate reinforcement tasks and are not effective on de-

layed reinforcement tasks. However, by adding exponentially-decaying eligibility traces,

* these algorithms can be modified so as to greatly improve their performance on delayed-

* reinforcement tasks. In selecting the durations of these traces one must accept a tradeoff

between performance on short-delay tasks and performance on long-delay tasks. Trace
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Experiment 4 contrasted the various algorithms in their ability to deal with this asymme-

try on a test analogous to those described in Section 4. As in Section 4. reinforcement-

comparison and yAt] - irit] algorithms performed best.

The recency and frequency heuristics studied in this section are conventionally thought

of as "general but weak" methods, as opposed to the knowledge-rich "specific but pow-

erful" methods that are central to much of modern Al. Our intention in studying these

heuristics has not been to dispel this conventional assessment, but to establish and detail

it experimentally. The results reported in this section are not surprising ones; they are

roughly what one might expect. Their importance is primarily in confirming and demon-

strating what would otherwise be merely hypothesis and presumption, and in detailing the

V magnitude, extent, and generality of the various phenomena.

Although delayed reinforcement is a necessary property of any task with opportunity

for secondary reinforcement, tasks of this section were carefully designed to offer no such

opportunities. All tasks of this section either had no neutral stimuli or else neutral stimuli

that were presented at random. Opportunities for secondary reinforcement arise only

when the actions of the learning system affect subsequent neutral stimuli (which can be

made non-neutral by the secondary-reinforement mechanism). These studies of delayed

reinforcement without secondary reinforcement provided a point of departure for the study

of secondary reinforcement reported in the next section.
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Section 6

SECONDARY REINFORCEMENT

Introduction

In this section we provide a heuristic justification for an algorithm for reducing the

severity of temporal credit assignment. This algorithm constructs a reinforcement sig-

nal that is of "higher quality" than the primary reinforcement signals available from the

P learning system's environment. We call this algorithm the adaptive heuristic critic (ARC)

algorithm. It can be regarded as a mechanism for generating secondary reinforcement

and is an extension of the model of classical conditioning presented by Sutton and Barto

(1981) and Barto and Sutton (1982). This model and the ARC algorithm were influenced

by Klopf's (1972, 1982) concept of "generalized reinforcement.' According to this idea, all

(or at least many) inputs to a neuronlike element can transmit reinforcing signals. Among

other things, this implies that as an element adjusts its weights, it not only alters its in-

put/output mapping but also redefines its evaluation signal. Properly implemented, such

1 a mechanism can construct a reinforcement signal that is more useful than the initial, or

primary, reinforcement signal. The ARC algorithm is the result of our effort to study this

type of process. The ARC algorithm also turns out to be closely related to the algorithm

used by Samuel (1959) in his checkers playing program. We begin the justification of this

algorithm by proposing that an ideal reinforcement signal should have certain properties.

The ideal reinforcement signal should be positive in value whenever the immediately

preceding action was better than average for the situation in which it was taken, and

negative whenever that action was worse than average. Its magnitude should indicate how

9 much better or worse than average the immediately preceding action was. By the value

of an action, we mean a measure of its expected effect on future values of the primary

-~ reinforcement signal. The ideal reinforcement signal would indicate to the learning system

the value of the given action relative to the sum of the values of all possible actions, each

weighted according to the given action's probability of being chosen in the given situation.

Since these probabilities depend on the current state of the learning system, so does this



average, and consequently the ideal reinforcement signal would also depend on the state of

the learning system. In fact, since the ultimate effect of an action on primary reinforcement

will usually be influenced by subsequent actions, the value of an action will also in general

* depend on the current state of the learning system. Since the learning system changes as

it accumulates experience, the ideal reinforcement signal also changes.

For example, suppose there is a problem with 3 actions, with the values 0, .8, and
.9 when taken in a particular situation by a learning system in a particular state. In

the early stages of learning, when the 3 actions are each selected equally often, the ideal

reinforcement signal will be positive for the latter two actions, and negative for the first.

As learning progresses, and the probability of selecting the first actions falls to zero, the
ideal reinforcement signal will change so as to be negative for the second action, remaining

positive only for the third action. One could argue that in order to satisfy one sense of the

word "ideal," the ideal reinforcement signal should be a constant function of the actions

and should always be positive only for the best of the actions, in this case only for the

third action. Such a reinforcement signal might cause perfect performance to be attained

more quickly, but only at the cost of sacrificing interim performance. Our intent is to

define the ideal reinforcement signal so that it stimulates the maximization of cumulative

performance.

4. To further clarify what we mean, consider an example using the game of chess. Suppose

that from a particular position the learning system can force checkmate by playing first

move y' and then move y, but that if it plays yi~ and then misses the winning movey2

it will lose the game. Suppose further that with the learning system's current knowledge

base, the latter is exactly what would happen if it chooses yl. Suppose finally that if the

learning system chooses some move other than y , then it has a better than even chance

of winning the game. In one sense, yl is a good move in this position, since it is the first

move in a sequence of moves that guarantees a win. On the other hand, with the current

knowledge base, yl is not a good move because it results in the immediate loss of a game

% that might otherwise be won. Our intent is to define the value of a particular move in the

latter, local sense that would label yi a poor move. We wish to consider each move in
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make the prospects better or worse?"

The ideal reinforcement signal would be an improvement over the primary reinforce-

ment signal in three ways. These are, in decreasing order of importance to the work

presented here:

Immediacy -- Some effects of the choice of an action on subsequent primary reinforcement

may be delayed. In the ideal reinforcement signal all delayed effects are "brought closer to

the present" so that they are effective immediately after the action is taken. Immediate

reinforcement is an improvement over delayed reinforcement because there is no uncertainty

as to which action caused it.

Comnparion upitl a reinforcement standard - A particular reinforcement level is not good
* or bad in itself, but only in comparison with other reinforcement levels that might have

been received had the learning system or the environment behaved differently. Since the

ideal reinforcement signal would rate actions that are better or worse than average as being

positive and negative respectively, it would provide direct information as to whether the
selected action is a good or a bad selection. The ideal reinforcement signal would remove

the burden from the learning system of comparing reinforcements with a reinforcement

standard and for determining what that standard should be.

Increased reliability - The ideal reinforcement signal would be a relative measure of how
good or how bad the selected action is on the average. Whereas the primary reinforcement

5 Itsignal can be different each time a particular action is taken in a particular situation,

due either to random aspects of the environment, or to variations in subsequent action

selections, the ideal reinforcement signal would provide a reliable measure that takes into
account all possible variations and their likelihoods.

The concept of the ideal reinforcement signal is similar to that of the ideal evaluation

function for guiding a state-space search or the search through a game tree. In either case

this ideal is rarely obtainable but can only be approximated. In either case one looks to

heuristics, either learned or provided a priori, to build the approximation. A heuristic

gp 4 reinforcement signal is a reinforcement signal generated internally by a reinforcement-
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learning system, which it uses instead of the primary reinforcement signal. The idea is

that the heuristic reinforcement signal is more similar to the ideal reinforcement signal

than is the primary reinforcement signal. To improve on the primary reinforcement signal,

a learning system may use either a priori knowledge or knowledge gained from its past

experience. In the research described here, we considered only the latter case, and assumed

* that all available knowledge had already been built directly into the primary reinforcement

signal.

Given the limited information a learning system receives about the state of its environ-

ment, how good a heuristic reinforcement signal is actually possible? The ideal realizable

reinforcement signal is positive at the first indications from the environment that higher

than average primary reinforcement is forthcoming, and negative at the first indications

that lower than average primary reinforcement is forthcoming. To the extent that the en-

vironment provides such information, the size of the signal indicates the amount by which

the forthcoming reinforcement is higher or lower than average.

In some cases the first indication of forthcoming prtnMary reinforcement is the primary

reinforcement itself. In this case the ideal realizable reinforcement signal is an improve-

ment over the primary signal only by virtue of providing a performance standard, and

not by improving immediacy or reliability. In other cases, neutral stimuli provide the

first indications of unusually high or low forthcoming reinforcement, and the latter two

* improvements are realizable as well. It is the ideal realizable reinforcement signal that one

can most fruitfully attempt to emulate by a heuristic reinforcement signal.

The Adaptive Heuristic Critic Algorithm

In the adaptive heuristic critic (AHC) algorithm, a linear-mapping approach is used to

- * associate predictions of forthcoming reinforcement with stimuli. Stimuli are represented as

*vectors of n components. Associated with each stimulus component xi, I < i <n, is a

memory variable vi indicating the extent to which the presence of the stimulus component

indicates that unusually high or low reinforcement is forthcoming. As in Sections 4 and 5,

we call the vector vltj = (vi [t], v2 [t, . .. , v. [t]) the reinforceme nt- association vector. The

net prediction of forthcoming reinforcement associated with a stimulus vector is the sum
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of the stimulus components weighted by the components of the reinforcement- association

vector. We define the prediction of reinforcement forthcoming after time t, made by the

learning system at time a (i.e., using vs] ) as:

ifl
=T] vijalzift]. (19)

The reinforcement-association vector should be formed so that pl[t] is a good estimate

of forthcoming reinforcement. It follows, therefore, that a signal that is a good heuristic

reinforcement signal would provide an excellent basis for correcting estimates of p°[t] by

changing 6V. The following update rule accomplishes this:

v.[t + 11 = vd[t + P f[t + 1]i[t + 1], (20)

for 1 < i < n and t = 0, 1,..., where r[t + 1] is the heuristic reinforcement signal's

value at time t + 1, 0 is a positive constant, and fi[t + 11 denotes the value at t + 1

of a trace of zi, i.e., a weighted average of the past values of zi with the more recent

values weighted more heavily (see Section 5). If f[t + 1] is positive (negative) this equation

increases (decreases) the components of V that contributed to past predictions pe[t], as

indicated by their g components having been large in the recent past. If the same stimulus

sequence were presented again, this process would result in those predictions being higher

(lower) earlier in the sequence. The overall result is that the positive (negative) f event

is shifted earlier in time, and the heuristic reinforcement signal does a better job of giving

the earliest possible indication of changes in forthcoming reinforcement.

The above argument relies on the heuristic reinforcement signal working properly. The

following definition of the heuristic reinforcement signal is used in the AHC algorithm:

[t+ 1] =r[t + 1+ p'[t+ 1- p[t, (21)

where -y, 0 _ -< 1, is a scalar parameter. Equations 19, 20, and 21 constitute the AHC

algorithm. We now turn to the justification of (21).
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Let r' denote a hypothetical ideal reinforcement signal. Its value at time t + 1

indicates how much better or worse off the learning system is because of the particular

action selected at time t. Better or worse is defined in terms of the effect of the action

choice on subsequent primary reinforcement signal values r[t + ki, k > 1. The action

% y[t] at time t may affect primary reinforcement at any combination of later times. These

separate effects must somehow be combined in r" to give a measure of the action's effect.

Perhaps the simplest approach would be to sum these effects if they could be determined.

This leads one to attempt to define the ideal reinforcement signal as

00

r*[t + 1] - ZE{r[t + k] I y[t]} - E(r[t + k]}, (22)
k=1

* where the expectations are conditional on the structure and state of the environment and

of the learning system. One problem with (22) is that the infinite sum may not be defined.

Another is that although this definition seems a natural one, for certain special classes of

tasks it is not. In the following section we consider the class of time-blind tasks, for which

a different definition of r* is appropriate.

The sum in (22) may not converge either because it is unbounded or because the

sequence of partial sums includes infinite subsequences not all of which converge to the

same limit. Figure 31a shows the state-transition structure of an environment in which the

former occurs, and Figure 31b shows an environment in which the latter occurs, for the

action selected in leaving the state labeled A. These cases are problematic for the definition

in (22) but seem not to be problematic on an intuitive basis. The reinforcement given to

the action leaving State A is unimportant because the state will never be reentered. In

many cases these definitional problems can be eliminated by weakening the requirement

of convergence of (22) to that of summability, e.g. C~saro summability:

% N M

rT[t+l1- lim Y' ' Y[E(r(t + kj I y[t]} - E(r[t + k}]. (23)
N-00_ E '~ E

Since we have placed no restrictions on the tasks or the learning systems, it is possible
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that this limit is also undefined. In general it may be necessary to make a slightly different

definition of r" depending on the class of tasks or learning systems being considered. For

the purposes of the rest of this subsection, we assume that the limit in (23) exists.
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Figure 31

inforcement Signal.
Two Examples of Environmeaits that are Problematic for Definitions of the Ideal Re-

%~ .. %

-.." Let us call the sequence formed by E{r[t + k] I y[t]} - E{r[t + k]} for successive values

" of k the difference sequence. Each element of this sequence is the difference between

the expected value of reinforcement at some later time with and without the selection of

yt]. In a typical case we might expect y[t] to influence reinforcement and the state of the
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environment for a while, but that for large values of k the expected values of reinforcement

in the two terms are equal, and the corresponding elements of the difference sequence are

zero. In such a case the sum of all elements of the sequence would be finite, and its value

would be r*.

One possible approach to approximating r* would be to maintain a memory variable

whose value would be the current estimate of the sum of the difference sequence. A

major drawback to this approach is that these differences are never directly observable.

Each is the difference between two expected values of r[r], both for some time r, but

conditional on different circumstances. The actual values of r provide an estimate of

the expected value for the circumstances that actually occur, but the other circumstances

remain hypothetical. A second drawback to this approach is that an estimate of the sum of

a difference sequence would be needed for every combination of action and environmental

state in which the action was taken, which adds up to a great many memory variables to

update and store.

Another approach, which is used in the AHC algorithm, is to estimate the sum of the

difference sequence by constructing separate estimates of the sum of the E(r[t + k] I yt])

terms and the sum of the E(r[t + k]) terms, and then to subtract the two estimates. The

logic of this approach can be illustrated by rewriting (23) as a difference of two sums:
,q

N M

I =li Efr[t + I y[t) - Efr[t + (24)

M= = k=1

One might hope that the following is an equivalent expression:

N M N M

re = lim 2. : E(r[t + k) I y[t]) - lm 1: 1 1: E{r[t + kJ). (25)
N-oo _NN-.o_ N= k= M= k=

In this approach, one would attempt to estimate both terms of (25) from observed values

of r, and then subtract the two estimates to estimate r*. Unfortunately, (24) and (25)

J are not equivalent. Although (24) is well-defined, equivalent to (23), and, by assumption,

finite, the two major terms of (25) will typically both be infinite. Making finite estimates
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of these two terms and then subtracting them will yield a meaningless result.

The AHC algorithm's solution to this problem relies on the fact that the elements

of the difference sequence tend to be nonzero primarily only if they appear early in the

sequence, or, stated in different terms, that for large k the expected value of rtt + k] tends

to depend very little on [t]. If we assume that

E~r[t + k] I y[t]} = E~r[t + kJ),

for all k greater than M, then we could rewrite (23) as

r'[t +1= 1 E(r[t + k] Iyt]) - E(rlt + kJ). (26)
k =1=

As long as most of the nonzero terms of the sequence occur early, i.e., in the first M terms,

this will be a good approximation to the full sum. The advantage of (26) is that both of

its sums are finite and can be estimated easily.

" - The AHC algorithm actually works a bit differently, but the idea is the same. Rather

than having an abrupt cutoff at M time steps, succesive elements of the difference sequence

are weighted in an exponentially decreasing manner. This avoids problems with "horizon

effects," and allows arbitrarily late elements of the difference sequence to contribute to

the estimate of r*, albeit possibly greatly dincounted. The AHC algorithm is based on

estimating

r- [t + 1] P -y4-?E{r[t + k] I y[t])- E y-1E{r[t + k]}, (27)
k=1 k=1

where 0 < Y < 1. These sums converge so long as E{r[t + kJ} is bounded.

y. is called the discount rate. The use of a discount rate effectively assigns greater

value to earlier primary reinforcement than later primary reinforcement. By adjusting y,
one controls the extent to which the learning system is concerned with long-term versus
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short-term goals. It is common in studying Markovian decision problems to introduce such

": a discount rate by taking the maximization of (27) directly as the goal of learning rather

than as an approximation (Derman, 1970; Mine and Osaki, 1970).

The expected values we have discussed thus far are all implicitly conditional on the

structure and state of the particular environment and learning system. In the following it

is necessary to forego this notational convenience in the case of the states. Denoting the

state of the environment at time t as q[t] and the complete state of the learning system

at time t as wit],* we rewrite (27) as:

00 0

r: it + 1] Ejr t + k] I yt],qftJIw[t]) - F,1E{r[t + k] q[tJ, w[t]}. (28)
k=1 k=1

At time t + 1, r[t + 1] will be available for use as an estimate of E{r[t + 1] I

y[t], q[t], w[t]}. Using this approximation, and taking this term outside the first sum

in (28) yields

r*[t+1] r r[t+1]+E 7 k - ' E{r[t+k] Iy[jt],q[tJ, [t]}-E "kl-E{r[t+k] I q[t], w[t]}. (29)
k=2 k=1

Since r[t + k], for k > 2, does not depend on y[t directly, but only through y[t] 's

effect on q[t + 1], the first expected value in the above expression can be rewritten to be

conditional only on q[t + 1]:

r'[t + 1] ; r[t + 1] + E k1-E{r[t + k] q[t + 1], w[tl} - E yklE~rt + k I q[t], wit]} ,
k=2 k=1

or, making the change of variable k - k + 1 in the first sum:

/. * Note that in this context witj] denotes the complete state of the learning system. In the case of the
AHC algorithm, this includes both the action-association vector 67 and the reinforcement-association

*vector 6.
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r*[t + 11 P rlt+1]+ 'E yk-'E(r[t + 1 + k] I q[t + 11, w[t]} - E -' E{rlt + k] I q[t], w[t]}.
k=1 k=1

As mentioned above, in the approach taken by the AHC algorithm, the learning system

attempts to directly construct estimates of the two expected values in these equations.

The algorithm can only use information actually available to the learning system. The

expected values in the above expression are conditional on the state of the environment.

Direct information about the state of the environment is not available to the learning

-. system, but stimuli are available that give clues as to the state of the environment. The

best a realizable heuristic reinforcement signal can do is approximate expected values on

the basis of this stimulus information. Denoting by z[t] the stimulus received at time t,

which provides information about the state of the environment q[t] at time t, the best a

realizable heuristic reinforcement signal can do is approximate the following quantity:

r*[t+ 11 s rIt+11+ yE - {r[t+1+k] I -[t+1j,w[t]} -E -- lE{r[t+k I z[t],w[t]}.
k= 1 k=1 (30)

In order to do this, the learning system maintains an estimate of the expected value

of forthcoming discounted primary reinforcement. We will call this the prediction of forth-

coming reinforcement.

p[t] ft @-k E{r[t + k] x [t],w[t]}. (31)
k=1

This is an estimate of reinforcement forthcoming atfter time t made by the learning system

at time s. The expected value in (31) depends on the actions the learning system is likely

to make on subsequent steps. This is why w[t], the state of the learning system, conditions

the expected value. Since the state of the learning system may change at each time step,

the expected value above may change at each time step. Because of this, any statistical
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regularities that the learning system manages to pick up will necessarily be slightly out-

of-date as soon as they are determined. For a statistical approach to work, the effect of

changes in w on the expected values above must be small, at least over short time periods.

If we make this assumption, then we can ignore small changes in w, such as those between

w[t] and wit + 1], and approximate (30) by the following heuristic reinforcement signal:

r[t+ 11 = rt + 1] + pt+ 11 - it],

which is the expression used in the AHC algorithm (c.f. (21)).

Estimates p'[t] can be constructed in any number of ways. Since these estimates must

be associated with stimuli, the remarks of Section 4 regarding various association schemes

apply. The AHC algorithm uses the linear-mapping approach given by (19), and uses f

as an error term to update its estimates by (20). Witten (1977) used the same as the

AHC algorithm to update estimates associated with states of the environment. However,

he used the indepeadent associations approach and used a quantity different from this i

as heuristic reinforcement to update action associations.

.%. ~Special Cases

Analyses similar to that presented above can be performed for specialized classes of

tasks. Here we omit these analyses but present the resulting specialized versions of the

AHC algorithm for each case. Details can be found in Sutton (forthcoming). We consider

three types of tasks: time-blind tasks, time-until-failure task., and time-until-success tasks.

.. These three types of tasks are examples of episodic tasks. In these tasks, the environmental

interaction can be naturally divided into episodes, where the performance during each

episode is dependent only on the behavior during the episode, and where the boundaries

between episodes are clearly demarcated. In chess or backgammon, for example, the

episodes are games.

Whether or not a task is episodic can be very important for purposes of credit as-

signment. At the end of each episode the learning system is guaranteed that there will
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be no further delayed effects of any of the actions taken during the episode. Normally

this is not possible; the learning system can not "close the books" on the credit to be

assigned to any of its past behavior, for there may always be some further consequences.

It is the possibility of such arbitrarily delayed effects that complicates the definition and

approximation of the ideal reinforcement signal presented in the preceding subsection.

V Time-blind tasks are a particular kind of episodic task in which the goal of learning is

. defined in terms of performance per episode rather than in terms of performance per time
step. In a time-blind task, the goal of learning is "blind" to the duration of the episodes.

Most games are time-blind tasks; in chess or checkers, for example, there is, at least in

theory, no concern about the length of each game, but only about its outcome.

In most time-blind tasks each possible outcome of an episode can be assigned a definite

value, e.g., +1I, -1I, and 0, for win, loss, and draw of a chess game. We generalize this

slightly by allowing reinforcement to be delivered throughout the episode. In this case the

goal of learning is to maximize the expected value of the sum of the reinforcement received

during the episode:

E{l: [rJ}

- where rjr] denotes the reinforcement received on the r th time step of the episode, and m

denotes the length in time steps of the episode. This expectation is implicitly conditional

on the task, the learning system, and the state of the learning system. Tasks in which the

outcome of the episode is known only at its end are easily handled within this framework

by having the reinforcement for all transitions except the final one be zero. One can argue

that under these conditions, the appropriate heuristic reinforcement signal is

,f[t + 1]1 r[t + 11+ p'[t + 11- plIt],

which is the same as (21) with -y I 1.

By a time-until-failure task we mean a task in which the goal of learning is to maximize
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the expected duration of the episodes. In this case, it can be argued that the heuristic

reinforcement signal is:

-[t + 11 =1 + pt[t+ 1] p[tJ.

A time-until-success task is a task in which the goal is to complete each episode in the

minimum amount of time. An example is the task of completing a maze. For these tasks,

it can be shown that the appropriate heuristic reinforcement signal is

f [t = -1 + P'[t + 1]- P'It[.

We refer the reader to Sutton (forthcoming) for detailed justification of these variants

of the AHC algorithm and a discussion of their relationship to the algorithms of Samuel

(1959) and Witten (1977).

Illustration

Figure 32 shows the behavior of the AHC algorithm when it is presented with an input

sequence consisting of a temporal series of clearly distiguishable stimuli followed by a brief

period of primary reinforcemrz't. Time trajectories of the input variables are shown twice

in the upper part of the figure, and synchronous plots of 9 and p'[t + 1] on successive

* trials from Trial 1 to Trial 10 appear below. This experiment used parameter values of

/ = .6, -y = 1, and r = 5. The simulation had not quite reached its asymptotic state

at the end of the 10 trials shown here. Eventually, f became positive only at the onset

of the earliest stimulus component, and pt [t + 1] remained constant over the time interval

during which stimuli were presented.

Notice how the times of positive f gradually moved earlier in the input sequence. First,

the latest stimulus components became associated with primary reinforcement, then they

acted as the basis for the association of earlier stimulus components. The behavior of the

prediction pt [t + 1] followed a similar pattern. Prediction of reinforcement was first made

* just before the arrival of reinforcement, and then it moved back as far as was possible with
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Figure 32

Behavior of the AHC Algorithm for a Temporal Series Stimuli Followed by a Brief
Period of Primary Reinforcement.

the available stimulus information. f became almost equal to a discrete-time derivitive

of p.* With the exception of the last one, the size of each positive blip of r^ very closely

matches the size of the corresponding increment in p. The last blip at the time of the

primary reinforcement event, reflects a combination of a positive influence due to primary

reinforcement, shown alone in the Trial-O plot, and a negative influence in later trials due

to the decrement in p that occurred at this time. In the last trials, these two influences

exactly cancelled out.

This simulation experiment corresponds to a classical, or Pavlovian, conditioning ex-

periment with a serial-compound conditioned stimulus (see Kehoe, 1982). Many other

" It would have been exactly this derivitive except for the small changes in the reinforcement-association
vector t from time step to time step.
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L~simulation experiments with the isolated AHC are described in Sutton (forthcoming).

vz:. Next we describe the use of the AHO algorithm in a reinforcement-learning task.

Pole Balancing

As a vehicle for illustrating the capabilities of a reinforcement-learning system coupled

with the AHO algorithm, we applied a learning system to a control problem. This task

is to learn to balance a pole that is hinged to a moveable cart by applying forces to the

cart's base. It is assumed that the equations of motion of the cart-pole system are not
known adthat teonly feedback evaluatin perforancei a fiuesgathtoccurs

when the pole falls past a certain angle from the vertical or the cart reaches the end of

* a track. In formulating this task, we followed the work of Michie and Chambers (1968a,

b) and implemented their learning system, called BOXES, in order to serve as a basis of

* comparison for the performance of our learning system. This illustration is discussed in

-, detail in Barto, Sutton, and Anderson (1983).

Although the system to be controlled is a realistic physical system (even though we

simulated it by computer), we were not interested in pole-balancing, but rather in the

type of problem our formulation (following that of Michie and Chambers) represents. The

sparsity of evaluative feedback creates a genuinely difficult temporal credit-assignment

problem. Since the failure signal occurs only after a long sequence of individual control

decisions, it is difficult to determine which decisions are responsible for the failure. There

is neither a continuously available error signal nor a continuously available performance

evaluation signal, as is the case in more conventional formulations of pole balancing. For

example, Widrow and Smith (1964) used a linear regression method, implemented by an

* Adaline, to approximate the bang-bang control law required for balancing the pole. In

order to use this method, however, they had to supply the controller with a signed error

signal at each time step whose determination required external knowledge of the correct

control decision for that time step. The problem we considered, on the other hand, requires

the learning system to discover for itself which control decisions are correct, and in so doing,

solve a difficult credit-assignment problem that is completely absent in the usual versions

of this problem. If one were merely interested in controlling this type of dynamical system
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for practical purposes, one could easily obtain a more informative evaluation signal without

resorting to an adaptive critic algorithm. * However, we think that the learning problem

as posed here contains many of the difficulties that characterize the learning problem faced

by adaptive elements that are embedded in networks.

Figure 33 shows a schematic representation of a cart to which a rigid pole is hinged.

* The cart is free to move within the bounds of a 1-dimensional track. The pole is free

to move only in the vertical plane of the cart and track. The controller can apply an

impulsive "left' or "right" force F of fixed magnitude to the cart at discrete time intervals.
The cart-pole system was simulated so as to match as closely as possible the behavior

of the real physical system, including nonlinearities and friction (see Barto, Sutton, and

Anderson, 1983, for details). The cart-pole model has four state variables:

x: the position of the cart on the track,

0: the angle of the pole with the vertical,

i: the cart velocity, and

i: the rate of change of the angle.

Parameters specify the pole length and mass, cart mass, coefficients of friction between the

cart and the track and at the hinge between the pole and the cart, the impulsive control

force magnitude, the force due to gravity, and the simulation time step size.

At each time step, the controller receives a vector giving the cart-pole system's state

at that instant. If the pole falls or the cart hits the track boundary, the controller receives

a failure signal, the cart-pole system (but not the controller's memory) is reset to its

.5 initial state, and another learning trial begins. The controller must attempt to generate

controlling forces in order to avoid the failure signal for as long as possible.

We used the same method of representing the cart-pole state that Michie and Chain-

In particular, since signals giving the state of the cart-pole system are available to the learning
system, one could provide at each time step a signed error giving the difference between the current
state and the desired state. The point is, however, that we assume that this desired state is unknown

S so that such an error signal is not available.
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o4" Cart-Pole System.

bers did. They divided the four-dimensional cart-pole state space into disjoint regions

(or "boxes") by quantizing the four state variables. They distinguished 3 grades of cart

position, 6 of pole angle, 3 of cart velocity, and 3 of pole anglular velocity. In our version

of this task, the following quantization thresholds are used:

- z: ±0.8,A2.4m,

9 : 0,±I, ±6, ±12degrees,

i: ±0.5, ±o0 m/sec,

9: ±50, ±oo deg/sec.

This yields 3 x 3 x 6 x 3 = 162 regions corresponding to all of the combinations of

the intervals. We assume that this quantization is provided from the start. We assume

the existence of a decoder that has four real-valued input pathways for the system state

variables and 162 binary-valued output pathways corresponding to the 162 regions of the

*state space. The decoder transforms each state vector into a 162-component binary vector
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whose components are all zero except for a single 1 in the position corresponding to the

region containing the state vector. This binary vector serves as input to an adaptive

element that implements Algorithm 4 described in Section 4. We call this adaptive element

an associative search element or ASE. The reinforcement signal sent to the ASE is generated

by another element, which we call the adaptive critic element or ACE, that implements the

AHC algorithm. The ACE receives as input the binary vectors generated by the decoder

and the primary reinforcement signal. This reinforcement signal remains zero until failure

occurs, at which time it is set to -1 for a single time step. Figure 34 shows an ASE

together with an ACE configured for the pole-balancing task.

,%6

ACE

* ~I. V2 r ,at~orc..e~nt

,.

State Vector

Figure 34

ASE and ACE Configured for the Pole-Balancing Task.

"- In the terminology introduced in Section 4, this two-element learning system uses an

Z" independent-associations approach to form both the mapping from cart-pole state vectors

to control actions and the mapping determining heuristic renforcement as a function of
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cart-pole state. This allows direct comparison with Michie and Chambers' BOXES system.

However, this is a restricted special case of the linear-mapping capabilities of the ASE and

ACE. In future work we intend to explore other representations of cart-pole states that

can permit the generalization abilities of a linear-mapping approach to be exploited. We

• .also intend to replace the fixed decoder with a layered network whose task will be to create

4 an appropriate representation for solving the problem (see Section 2).

We implemented the BOXES system as well as our system shown in Figure 34. We

wanted to determine what kinds of neuronlike elements could attain or exceed the per-
formance of the BOXES system. Our results suggest that a system using an ASE with

heuristic reinforcement supplied by an ACE is easily able to out-perform the BOXES sys-
.A tem. We must emphasize, however, that it is not our intention to criticize Michie and

Chambers' program: The BOXES system they described was in an initial state of develop-

ment and clearly can be extended to include a mechanism analogous to our ACE. We make

comparisons with the performance of the BOXES system because it provides a convenient

reference point.

We simulated a series of runs of each learning system attempting to control the same

cart-pole simlation. Each run consisted of a sequence of trials, where each trial began with

the cart-pole state z = 0, i = 0 0 = 0, e = 0, and ended with a failure signal indicating

that 0 left the interval [-12 degrees, 12degrees] or z left the interval [-2.4 m,2.4 m].

We also set all the trace variables to zero at the start of each trial. The learning systems

were "naive" at the start of each run (i.e., all the weights wi and vi were set to zero).
At the start of each run of the ASE/ACE system, we supplied a different seed to the

pseudo-random number generator that we used to generate the randomness in the ACE's

output. Since the ASE runs began with weight vectors equal to zero, initial actions for

each state-space region were equiprobable, and initial ACE predictions were zero. Except

for the random number generator seeds, identical parameter values were used for all runs.

Runs consisted of 100 trials unless the run's duration exceeded 500,000 time steps (approx-

imately 2.8 hours of simulated real time), in which case the run was terminated. For our
implementation of the BOXES system, we used the parameter values published by Michie

and Chambers (1968a). We experimented with other parameter values without obtaining
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consistently better performance. We did not attempt to optimize the performance of the

systems using the ASE. We picked values that seemed reasonable based on our previous

experience with similar adaptive elements (see Barto, Sutton, and Anderson, 1983, for

- details).

Figures 35 and 36 show the results of our simulations of BOXES and the ASE/ACE

system. The graphs of Figure 35 are averages of performance over the 10 runs that

produced the individual graphs shown in Figure 36. In both figures, a single point is

plotted for each bin of 5 trials giving the number of time steps until failure averaged over

those 5 trials. Almost all runs of the ASE/ACE system, and one run of the BOXES

system, were terminated after 500,000 time steps before all 100 trials took place (those

whose graphs terminate short of 100 trials in Figure 36). We terminated the simulation

before failure on the last trials of these runs. To produce the averages for all 100 trials

shown in Figure 35, we needed to make special provision for the interrupted runs. If the

duration of the trial underway when the run was interrupted was less than the duration

of the immediately preceding (and therefore complete) trial, then we assigned to fictitious

remaining trials the duration of that preceding trial. Otherwise, we assigned to fictitious

remaining trials the duration of the last trial when it was interrupted. We did this to

prevent any short interrupted trials from producing deceptively low averages.

The ASE/ACE system achieved much longer runs than did the BOXES system. Figure

36 shows that the ACE/ASE system tended to solve the problem before it had experienced

100 failures, whereas the BOXES system tended not to. The good performance of the

ASE/ACE system was almost entirely due to the ACE's supplying reinforcement through-

out trials. For the BOXES system and for an ASE without an ACE, learning occurred only

upon failure, an event that became less frequent as learning proceeded. With the ACE

in place, an ASE could receive evaluative feedback on every time step. The learning pro-

"-" duced by tli,. feedback caused the system to attempt to enter particular parts of the state

-- space and to avoid others. We simulated the control problem using an ASE without an

ACE, using the same parameter settings that worked well for the ASE/ACE experiments.

The ASE was not able to attain the level of performance shown by the BOXES system.
However, we have not yet systematically evaluated and compared the performances of
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Figure 35

Averaged Learning Curves for ASE/ACE system and BOXES system on the Pole-
Balancing Task.

other associative-reinforcement learning algorithms with and without the use of the AHC

algorithm. We also have not applied the time-until-failure version of the AHC algorithm

developed above.

Conclusion

We have attempted to justify an adaptive heuristic critic algorithm. The basic idea is

to approximate an ideal reinforcement signal that would provide an immediate indication

as to whether or not an action would lead to better than average future cumulative rein-

forcement when taken in the current situation. The resulting algorithm turns out to be

similar to the "generalization learning" algorithm used for altering the evaluation function

in Samuel's (1959) checkers playing program. If Samuel's algorithm is simplified by, among
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Figure 36

Learning Curves for Individual Runs of the ASE/ACE system and BOXES system on
the Pole-Balancing Task.

other things, rervm'ing all features that are specialized for 1) the game of checkers, for 2)

tasks in which off-line search is performed, and for 3) efficient implementation on a small

" . computer, the only difference between what remains and the AHC algorithm is that the

latter includes the discount rate parameter -1 whereas S-nuuel's algorithm appears not to.

Theoretical analysis in terms of the ideal reinforcement signal suggests that whereas the

discount rate parameter is not needed for the special case of time-blind tasks, which in-

cludes game-playing tasks, it may be necessary for other tasks. Experiments with abstract

tasks and with a more difficult pole-balancing task confirm this conclusion by showing

greatly improved performance through the use of the discount rate parameter (Sutton,

forthcoming).
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Section 7

SUMMARY

In this report we described some of the results obtained from our simulation experi-

ments with goal-seeking elements. The results presented in Section 2 show that goal-seeking

elements are able to cooperate to solve problems that individual elements cannot solve.

These experiments with layered networks indicate that the approach we are taking does

have the potential for making adaptive networks useful substrates for adaptive problem

solving. These experiments also indicate that more development would be useful at the

level of basic algorithms for single elements. We gained increased understanding of the

type of learning problem faced by elements that are embedded in networks and came to ap-

preciate that rapid and reliable learning by networks requires that components implement

learning algorithms that are effective in a wide range of conditions. Unlike learning systems

that are presented with carefully controlled problems by knowledgeable teachers, network

components face environments, determined maostly by the rest of the network, that do not

present neatly structured problems. Components must be opportunistic agents capable of

improving performance in a wide range of conditions and under considerable uncertainty.

Failure of components under these conditions manifests itself as poor performance by the

network. Therefore, to correctly attribute poor network performance to particular de-

sign decisions made at the network level, we felt the need to continue the development of

individual components as detailed in Sections 3 through 6 of this report.

The learning problem faced by a network component can be characterized as an associa-

tive reinforcement learning problem under uncertainty as described in Section 1. Contrary

to popular belief, this type of problem has not been extensively studied. We isolated and

examined several problems that arise in this type of learning which might be regarded as

aspects of the credit-assignment problem. By systematically experimenting with a set of

algorithms over a wide range of tasks, we made progress in three areas: 1) we isolated and

elucidated several issues concerning sequential credit assignment, including those produced -

by unbalanced reinforcement, misleading generalizations, delayed reinforcement, and sec-
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ondary reinforcement, 2) we demonstrated that substantial performance improvements are

possible in reinforcement-learning problems through the use of reinforcement-comparison

mechanisms, and 3) we presented an algorithm, the AHC algorithm, that can make tempo-

ral credit-assignment problems less severe. We demonstrated the utility of this algorithm

using the pole-balancing control problem.
"% u

Reinforcement Comparison - Reinforcement-comparison mechanisms played a promi-

nent role in the research we reported. In Section 3 we described several reinforcement-

comparison algorithms for discrete-action nonassociative reinforcement-learning tasks. We

described results showing that these algorithms led to substantial increases in learning rate

compared to several algorithms not employing reinforcement-comparison mechanisms, in-

cluding some well-studied learning automaton algorithms. Their learning speed was par-

ticularly evident for tasks involving unbalanced reward probabilities. Although reinforce-

ment comparison is a necessary part of any algorithm designed to perform local, gradient-

'- " directed search of a continuous parameter space, it is not at all obvious what utility such a

*- ') comparison would have in algorithms designed for the global search of a set of unrelated,

discrete actions. Our results suggest that reinforcement comparison is also useful for these

types of problems.

Misleading Generalisations - The results described in Section 4 concern algorithms

that are extensions to the associative case of the nonassociative algorithms discussed in

Section 3. In these experiments, we provided neutral input in addition to reinforcement

*i input to the learning system. However, whereas a learning system's actions could influ-

ence subsequent reinforcement, they could not influence subsequent neutral input. This

permitted us to focus on some of the basic problems that arise when a system .st fc i

a mapping from input patterns to actions under the influence of reinforcement feedl

We found that even if the required mapping were within the representational capabilities

of the learning system, it was possible for certain characteristics of the problem to prevent

the formation of the correct mapping. This occurred as a result of a variety of asymmetries

. that favored the association of the correct action with some input patterns while at the
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same time prevented the formation of the correct association with other input patterns.

Generalization from the favored pattern could overwhelm learning for the other pattern,

preventing the necessary discrimination.

We consider this problem to be one of great importance. Generalization between input

patterns has the potential for greatly accelerating learning, but brings with it the danger

of preventing the formation of certain types of mappings. This is particularly troublesome

given our interest in using elements capable of associative reinforcement learning as net-

work components. First, it will not be possible to ensure the absence of reinforcement

asymmetries in the tasks faced by network components because their environments will be

largely determined by the rest of the network, which will itself be adapting. Second, since

we wish to use networks as the means for overcoming the representational limitations of

single elements, it seems necessary that the elements be able to form any mapping that is

within their own representation capabilities. If the correct sort of "pre3sure" required for

forcing even linear discrimination is not generated by the elements, it is hard to see how

the appropriate kind of pressure can be generated in collections of elements for forcing the
development of new features.

We are aware of no previous studies that recognized these types of problems. This is

probably due to the sparsity of research on associative reinforcement lea rning using the

linear-mapping approach. We experimented with an algorithm similar to one of the few

relevant algorithms studied in the past. We found that it was very susceptible to the prob-

lems due to misleading generalizations. Under certain conditions, it always converged to

the incorrect mapping. We described other algorithms, which incorporate generali zat ions

of the reinforcement-comparison mechanisms described in Section 3, that can overcome

these difficulties.

Delayed Rc' iforcement - Our results concerning delayed reinforcement, described in

Section 5, confirm the usual criticism of the 'recency heuristic' for assigning credit. For a

backwards-averaging method of implementing the recency heuristic, the decrease in learn-

ing rate is directly proportional to the length of the time interval over which the average is

taken, and an average that does not reach far enough back in time for a given reinforcemEnt
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* delay is useless for assigning credit. In selecting the interval for backwards averaging one

must accept a tradeoff in performance on short-delay tasks and performance on long-delay

* tasks. Trace lengths optimal for long delays result in a suboptimal learning rate on tasks

- with short delays. We pointed out, however, that any a priori knowledge about reinforce-

ment delay can be incorporated into the backwards- averaging kernel and that this kernel

might be adaptively adjusted. We did not pursue either of these possibilities.

One of the more interesting results described in Section 5 is related to the results of

Section 4 concerning misleading generalization. With back wards-averaging methods, it is

* possible for the learning due to a short-term reward to prevent learning due to a longer-

term reward in situations in which the latter is clearly better in terms of cumulative reward.

This is another phenomenon that illustrates the weakness of the recency heuristic. All the

algorithms exclusively employing backwards-averaging for handling delayed reinforcement

performed poorly on this type of task. They performed poorly not just because they were

learning slowly, but because they were actually learning to perform the wrong action.

Better performance would have resulted if no "learning"had occurred at all. Although

* algorithms employing a reinforcement-comparison mechanism did better on these tasks

than the other algorithms, they still performed poorly.

Like the conditions that bring about incorrect learning due to misleading general-

ization, the conditions that bring about this deficiency can be expected to occur within

networks. This is therefore another example of a low-level problem that can manifest itself

in poor performance at the network level.

Secondary Reinforcement - In Section 6 we developed a secondary reinforcement

algorithm, the AHC algorithm, that converts neutral stimuli to reinforcement signals in

order to overcome some of the shortcomings of the recency heuristic for sequential credit

assignment. The resulting algorithm can be regarded as an extension of the reinforcement-

comparison algorithms described in earlier sections by the addition of a reinforcement-

anticipation mechanism. In order for this algorithm to be useful, the learning system must

be able to control neutral as well as reinforcement input.
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We made use of the notion of an ideal reinforcement signal. This theoretical construc-

tion assisted in our understanding of existing sequential credit assignment algorithms and

led to the creation of new ones. We illustrated the utility of the resulting AHC algorithm

by using a particular formulation of the pole-balancing cont~ol task. Our learning sys-

tem performed significantly better than did a learning system designed specifically for the

* pole-balancing task that did not include secondary reinforcement.

Centralised versus Distributed Algorithms -Aside from the results described in

Section 2, which explicitly deal with networks, the results described in this report can be

regarded as concerning either individual adaptive components of networks or as central-

ized learning algorithms that bear no relation to networks. If the first view is adopted,

then these results are indirectly about distributed algorithms, implementable as adaptive

networks. On the other hand, nothing prevents the latter view, and we believe many of

our observations are also significant for this centralized interpretation. However, despite

this possibility, we are really interested in distributed learning algorithms, and we believe

that our research program represents a rather significant departure from the usual view of

adaptive elements, adaptive networks, and related neural metaphors.

Our adaptive components implement simple input/output functions and communicate

with one another by means of excitatory and inhibitory signals rather than by means of

complex symbolic messages. They resemble most neuronlike adaptive elements in this

regard. However, the algorithms we use to adjust the parameters of the input/output

function are more complex than those generally considered in the past. They require

numerous "auxiliary" variables to implement eligibility traces, reinforcement-comparison

mechanisms, and reinforcement- anticipation mechanisms. We argued that these mccha-

nisnns are necessary if the element is to be capable of efficient learning in environments

that do not provide controlled training experiences for the element. In environments such

as these, the element needs to perform functions for itself that are more often assumed to

be carried out by a helpful teacher. Irrespective of the precise manner of "packaging" these

functions in terms of individual neuronlike elements, this perspective places considerable

adaptive power at a low level in the functional/structural hierarchy.
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In contrast to this approach are those that are completely centralized or that are

distributed across networks of components that individually implement very sophisticated

computational functions. Our research suggests that complex learning algorithms are

required to adjust even very simple input/output functions in unhelpful environments. It

therefore also suggests that extremely complex learning algorithms may be required to

adjust the complex computations performed by centralized or coarsely distributed systems

under similar conditions. We therefore think that an approach using compuationally

simple elements that employ sophisticated learning algorithms is a more promising avenue

for achieving deeply adaptive problem-solving systems.
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